2003

MCDEP

Development of Monte Carlo Depletion Code MCDEP

, , , 305-333 150

	Los Alamo	S
MCNP (Monte Carlo N - Particle Transport C	Code)	
		가
MCNP		MCDEP (<u>M</u> onte <u>C</u> arlo
Depletion Code Package) . I	MCNP	(Exponential Matrix
method) ORIGEN -2		가 MCNP
	가	
. 가		
HELIOS CASMO - 3		

Abstract

Monte Carlo neutron transport calculation has been used to obtain a reference solution in reactor physics analysis. The typical and widely -used Monte Carlo transport code is MCNP (Monte Carlo N - Particle Transport Code) developed in Los Alamos National Laboratory. The drawbacks of Monte - Carlo transport codes are the lacks of the capacities for the depletion and temperature dependent calculations. In this research we developed MCDEP (Monte Carlo Depletion Code Package) using MCNP with the capacity of the depletion calculation. This code package is the integration of MCNP and

depletion module of ORIGEN -2 using the matrix exponential method. This code package enables the automatic MCNP and depletion calculations only with the initial MCNP and MCDEP inputs prepared by users. Depletion chains were simplified for the efficiency of computing time and the treatment of short-lived nuclides without cross section data. The results of MCDEP showed that the reactivity and pin power distributions for the PWR fuel pins and assemblies are consistent with those of CASMO -3 and HELIOS.

. MCDEP

가

HELIOS [8]

II.1

X, 가

:

CASMO -3 [7]

А

가

. ,

П.

11.

[9,10]

.

가

.

.

3 3

 $\frac{d\vec{X}}{dt} = \mathbf{A} \cdot \vec{X} , \qquad (1)$

가 CASMO, HELIOS, DIT . , 가 , 가 ,

ORIGEN -2

(1)

MCDEP . , (1)

 $\vec{X}(t) = \exp(\mathbf{A}t) \cdot \vec{X}(0), \qquad (2)$

exp(At)

 $\exp(\mathbf{A}t) = I + At + \frac{(At)^2}{2!} + \dots = \sum_{m=0}^{\infty} \frac{(At)^m}{m!}.$ (3)

가 . , 가 . , X_i(t)가 i , λ_i , σ_i 1 - , φ_i 1 , _{ij} i가 , f_{ik} k가

i 7 ŀ ,

$$\frac{dX_i(t)}{dt} = \sum_{j=1}^N \ell_{ij} \lambda_j X_j + \overline{\phi} \sum_{k=1}^N f_{ik} \sigma_k X_k - (\lambda_i + \sigma_i \overline{\phi}) X_i \quad (i = 1, ..., N),$$
(4)

1 -

II.2

MCDEP		MCNP		
		. MCNP	NJOY	ENDF/B
			C	RIGEN -2
	1			
1	MCDEP		MCNP	
				_

. MCNP MCNP 1 . •

1 MCNP 1 . ORIGEN -2

가 가 ORIGEN -2 . • ORIGEN -2 . 가 ORIGEN -2 MCNP

가 8

. 가 .

MCNP4C .[11]

- MCDEP
 1
 MCDEP

 MCNP
 MCDEP

 MCDEP
 MCNP
 , ORIGEN -2
 , , ,

 , 1
 .
 .
- Tally MCNP 가 MCNP MCNP 1 . 1 ORIGEN -2
- MCNP MCNP -
- .

II.4 MCDEP

- MCDEP FORTRAN90 MCDEP MCNP MCDEP . MCNP ORIGEN-2 . PC 가 MCNP 가 가 MCNP 가 Linux Cluster 가 . MCNP 가 CPU
- - III.
 - MCDEP 가 가 UO₂

HELIOS CASMO-3 . 17x17 7 PYREX . 1 UO₂ MCDEP 40 MWD/KGU HELIOS 670 pcm CASMO-3 280 pcm CASMO-3

ORIGEN -2

2 7 HELIOS CASMO-3 300 pcm 40 MWD/KGU

 1000 pcm
 가
 2

 3
 0 MWD/KGU
 20 MWD/KGU
 .

 1.0%
 .
 가

.

3 PYREX 가 CASMO-3, HELIOS . . CASMO-3

HELIOS 가 가 4 5 0 MWD/KGU 20 MWD/KGU 3.0%

MCNP	ORIGEN -2	
	MCDEP	
가		
	. 가	
MCDEP	HELIOS	CASMO - 3
	. PYREX 가	
CASMO - 3 HELIOS		
MCNP		
가		
		가

- J. F. Briesmeister, "MCNP-A General Monte Carlo N-Particle Transport Code," Version 4B, LA -12625 - M, Los Alamos National Lab. (1997)
- [2] D. I. Poston, H. R. Trellue, 'User d Manual, Version 2.0 for MONTEBURNS, Version 1.0, "LA -UR -99 -4999, Los Alamos National Lab. (1999)
- [3] M. J. Bell, 'ORIGEN The ORNL Isotope Generation and Depletion Code, " ORNL -4628 (1973)
- [4] 'MCBURN A MCNP Monte Carlo Depletion Utility Program, "AET, Inc., Cupertino, California, USA (1999)
- [5] Zhiwen Xu, et al., "An improved MCNP -ORIGEN Depletion Program (MCODE) and its verification for High -Burnup Applications," PHYSOR 2002, Seoul, Korea, Oct. 7~10 (2002)
- [6] H. J. Shim et al., 'Monte Carlo Depletion Analysis of a PWR with the MCNAP," M&C 99 Madrid, Int. Conf. on Mathematics and Computations, Reactor Physics and Environmental Analysis in Nuclear Applications, 27-30 September 1999, Madrid, Spain (1999)
- [7] M. Edenius et al., 'CASMO -3, A Fuel Assembly Burnup Program Methodology Version 4.4, "STUDSVIK/NFA -89/2 (1989)
- [8] R. J. Stamml er et al., 'HELIOS Methods, "Studsvik Scandpower (1998)
- [9] A. G. Croff, "A User's Manual for ORIGEN2 Computer Code," ORNL/TM -7175 (1980)

[10] S. J. Ball and R. K. Adams, 'MATEXP, A General Purpose Digital Computer Program for Solving Ordinary Differential Equations by the Matrix Exponential Method, "ORNL -TM -1933 (1967)

[11] , "," KAERI/RR -2121/2000, 2001.

1. UO₂

	MCDE	Р	HEL	10S	CASMO-3		
(MWD/KGU)	Keff	Std	Keff	$\Delta \rho$ (pcm)	Keff	$\Delta \rho$ (pcm)	
0.0	1.44172	0.00135	1.44505	-160	1.44293	-58	
0.5	1.39046	0.00141	1.38885	83	1.39321	-142	
1.0	1.38990	0.00163	1.38127	450	1.38542	233	
2.0	1.37718	0.00156	1.37074	341	1.37455	139	
3.0	1.36511	0.00159	1.36087	228	1.36435	41	
4.0	1.35565	0.00162	1.35085	262	1.35401	89	
5.0	1.34679	0.00164	1.34069	338	1.34359	177	
7.5	1.31975	0.00156	1.31509	268	1.31771	117	
10.0	1.29155	0.00157	1.29017	83	1.29280	-75	
12.5	1.26943	0.00143	1.26608	208	1.26886	35	
15.0	1.24860	0.00167	1.24291	367	1.24582	179	
17.5	1.22701	0.00163	1.22041	441	1.22358	228	
20.0	1.20253	0.00151	1.19858	274	1.20200	37	
25.0	1.1614	0.00151	1.15670	350	1.16062	58	
30.0	1.12472	0.00172	1.11629	671	1.12047	337	
35.0	1.08350	0.00152	1.07711	548	1.08130	188	
40.0	1.04606	0.00156	1.03876	672	1.04302	279	

	MCDEP		HEL	105	CASMO-3		
(MWD/KGU)	Keff	Std	Keff	$\Delta \rho$ (pcm)	Keff	$\Delta \rho$ (pcm)	
0.0	1.46855	0.00071	1.46585	125	1.46586	125	
0.5	1.41424	0.00068	1.41483	-29	1.41461	-18	
1.0	1.40987	0.00065	1.40732	129	1.40695	147	
2.0	1.39972	0.00066	1.39711	133	1.39647	166	
3.0	1.39006	0.00065	1.38756	130	1.38676	171	
4.0	1.38018	0.00076	1.37788	121	1.37695	170	
5.0	1.37054	0.00080	1.36808	131	1.36702	188	
7.5	1.34272	0.00065	1.34320	-27	1.34212	33	
10.0	1.31851	0.00073	1.31869	-10	1.31793	33	
12.5	1.29396	0.00071	1.29463	-40	1.29437	-24	
15.0	1.27159	0.00081	1.27112	29	1.27147	7	
17.5	1.24871	0.00069	1.24810	39	1.24913	-27	
20.0	1.22689	0.00070	1.22548	94	1.22717	-19	
25.0	1.18264	0.00074	1.18121	102	1.18440	-126	
30.0	1.14062	0.00075	1.13769	226	1.14214	-117	
35.0	1.09712	0.00075	1.09455	214	1.10005	-243	
40.0	1.05435	0.00069	1.05170	239	1.05803	-330	

3. PYREX

	MCI	DEP	HEL	105	CASMO-3	
(MWD/KGU)	Keff	Std	Keff	$\Delta \rho$ (pcm)	Keff	$\Delta \rho$ (pcm)
0.0	1.14821	0.00093	1.15242	-318	1.1702	-1637
0.5	1.11272	0.00086	1.11998	-583	1.13686	-1908
1.0	1.11229	0.00086	1.11718	-394	1.13372	-1699
2.0	1.11118	0.00093	1.11476	-289	1.13064	-1549
3.0	1.1057	0.00096	1.11279	-576	1.12808	-1794
4.0	1.10452	0.00085	1.11080	-512	1.12544	-1683
5.0	1.10177	0.00096	1.10869	-567	1.12271	-1693
7.5	1.0941	0.00085	1.10298	-736	1.11556	-1758
10.0	1.08894	0.00081	1.09865	-812	1.10993	-1737
12.5	1.08599	0.00087	1.09566	-813	1.10563	-1636
15.0	1.08386	0.00086	1.09425	-876	1.10293	-1595
17.5	1.08477	0.00081	1.09453	-822	1.10195	-1437
20.0	1.08564	0.00083	1.09643	-906	1.10267	-1423
25.0	1.09262	0.00073	1.09994	-609	1.105	-1025
30.0	1.09882	0.00083	1.10206	-268	1.10793	-748
35.0	1.08834	0.00069	1.08824	8	1.0964	-675
40.0	1.06197	0.00069	1.05627	508	1.06574	-333

1. MCDEP

2.

0.000								MCDEP
0.000								HELIOS
0.000								CASM03
1.056	0.993							
1.030	1.004							
1.041	1.004							
1.060	0.995	1.006						
1.030	1.005	1.006						
1.042	1.003	1.003						
0.000	1.045	1.052	0.000					
0.000	1.032	1.035	0.000					
0.000	1.048	1.050	0.000					
1.052	0.999	0.992	1.066	1.054				
1.030	1.005	1.009	1.046	1.051				
1.041	1.002	1.005	1.061	1.039				
1.057	0.991	1.000	1.070	1.086	0.000			
1.027	1.003	1.007	1.047	1.075	0.000			
1.038	1.000	1.003	1.062	1.080	0.000			
0.000	1.049	1.051	0.000	1.064	1.035	0.965		
0.000	1.024	1.028	0.000	1.056	1.021	0.968		
0.000	1.038	1.041	0.000	1.062	1.034	0.965		
1.035	0.989	0.978	1.014	0.976	0.946	0.920	0.906	
1.013	0.988	0.990	1.017	0.985	0.949	0.932	0.927	
1.017	0.981	0.981	1.025	0.978	0.950	0.932	0.923	
0.961	0.957	0.963	0.967	0.946	0.933	0.922	0.920	0.930
0.973	0.973	0.972	0.971	0.963	0.951	0.944	0.947	0.970
0.963	0.962	0.962	0.963	0.954	0.943	0.935	0.933	0.947

()

	-							
0.000							I	MCDEP
0.000							I	HELIOS
0.000	l						I	CASM03
1.027	1.008	1						
1.022	1.008							
1.031	1.010		_					
1.025	1.011	1.013	1					
1.022	1.008	1.009	1					
1.031	1.010	1.010		_				
0.000	1.036	1.039	0.000					
0.000	1.023	1.025	0.000					
0.000	1.035	1.037	0.000	L	_			
1.040	1.005	1.009	1.053	1.034	1			
1.021	1.008	1.011	1.034	1.040	1			
1.030	1.009	1.011	1.043	1.035	L	_		
1.039	1.004	1.007	1.047	1.066	0.000	1		
1.019	1.006	1.010	1.033	1.052	0.000	1		
1.027	1.006	1.008	1.043	1.055	0.000		_	
0.000	1.028	1.029	0.000	1.048	1.032	0.967	1	
0.000	1.016	1.019	0.000	1.037	1.012	0.977	1	
0.000	1.025	1.027	0.000	1.041	1.019	0.975		_
1.028	0.985	0.982	1.014	0.976	0.949	0.938	0.923	
1.007	0.993	0.994	1.009	0.990	0.963	0.949	0.943	
1.010	0.989	0.989	1.014	0.985	0.962	0.947	0.938	
0.972	0.969	0.964	0.977	0.955	0.955	0.945	0.940	0.962
0.980	0.981	0.981	0.979	0.973	0.963	0.956	0.957	0.973
0.974	0.973	0.973	0.973	0.966	0.956	0.948	0.945	0.954

4.

0.000 0.000 0.000 1.162 1.152 1.158 1.138 1.127 1.138 0.000 0.000 0.000 1.083 1.073 1.080 1.081 1.052 1.070 0.000 0.000 1.036 1.022 1.033 0.985

)

(

							MCDEP
							HELIOS
							CASM03
1.095							
1.116							
1.110							
1.070	1.028						
1.091	1.065						
1.086	1.056						
1.074	1.017	0.000					
1.069	1.023	0.000					
1.092	1.030	0.000					
0.974	0.000	1.009	1.033				
0.996	0.000	1.014	1.071				
0.982	0.000	1.021	1.057				
0.994	0.952	1.050	1.097	0.000			
0.998	0.969	1.032	1.095	0.000			
1.007	0.955	1.061	1.105	0.000			
1.047	0.986	0.000	1.064	0.981	0.918		
1.014	0.987	0.000	1.038	0.986	0.928		
1.043	0.992	0.000	1.059	0.993	0.944		_
0.942	0.000	0.958	0.913	0.000	0.868	0.932	
0.951	0.000	0.961	0.932	0.000	0.893	0.943	
0 942	0 000	0 967	0 922	0 000	0 893	0.950	

5. PYREX

0.964

0.981

0.967

0.937

0.959

0.894

0.905

0.904

0.938

0.915

0.941

0.919

0.909

0.934

0.876

0.888

0.892

0.920

0.919

0.942

0.970

0.967

0.982

(

)

1.029

1.000

0.000								MCDEP
0.000								HELIOS
0.000								CASM03
1.045	1.023							
1.038	1.024							
1.039	1.019		_					
1.062	1.022	1.015						
1.037	1.023	1.023						
1.038	1.017	1.015						
0.000	1.038	1.039	0.000					
0.000	1.037	1.039	0.000					
0.000	1.042	1.045	0.000					
1.049	1.010	0.000	1.046	1.037				
1.031	1.020	0.000	1.045	1.048				
1.032	1.014	0.000	1.049	1.034				
1.043	1.016	1.015	1.045	1.055	0.000			
1.026	1.014	1.017	1.040	1.057	0.000			
1.027	1.008	1.010	1.044	1.052	0.000			
0.000	1.017	1.014	0.000	1.030	1.004	0.962		
0.000	1.020	1.021	0.000	1.039	1.009	0.970		
0.000	1.024	1.026	0.000	1.038	1.014	0.970		_
1.002	0.974	0.000	1.003	0.975	0.000	0.935	0.925	
1.005	0.991	0.000	1.005	0.982	0.000	0.935	0.930	
1.005	0.985	0.000	1.009	0.977	0.000	0.938	0.933	
0.958	0.958	0.951	0.971	0.952	0.937	0.942	0.954	0.974
0.967	0.968	0.965	0.962	0.954	0.941	0.935	0.936	0.946
0.969	0.970	0.966	0.967	0.958	0.946	0.943	0.942	0.953

6. PYREX

()