2003 춘계학술발표회 논문집 항국원자력학회

C-14 Scrubber 및 기체 포집백의 표면 방사선량율 평가

Evaluation of Surface Dose Rate on C-14 Scrubber and Gas Bag

<u>강덕원</u>, 이형석, 이두호 한국전력공사 전력연구원 대전광역시 유성구 문지동 103-16

요 약

중수로형 원전의 감속재 상층기체의 퍼지 및 배기방출은 증기 회수 계통을 통해이루어지고 있다. ¹⁴CO₂의 제거에 사용되는 방법은 주로 흡착제에 의한 반응을 이용하는 것으로, 최적의 제거공정을 선택하기 위해서는 대상공정의 특성(온도, 압력, 습도, 농도, 유량 등)과 장기 처분시의 안정성까지 고려하여야 한다. 본 연구에서는 운전원의 피폭 보호차원에서 C-14 제거장치의 운전에 따른 기체 포집백과 Scrubber의 표면 방사선량율을 평가하였다. C-14 Scrubber를 한 주기 사용한 후 전량 교체한다는 전제하에 C-14 방사능이 40 mCi가 흡착되어 있는 것으로 6개의 지점에서표면 방사선량율을 계산하였으며 계산결과, 낮은 에너지의 β선 특성으로 인해 카트리지의 흡착제 표면에서만 1.25 μSv/hr로 매우 낮은 선량율을 나타냈다. 따라서 사용 후 카트리지의 교체나 보수 등으로 인한 접근에 따른 운전원의 피폭은 크게 고려하지 않아도 될 것으로 판단되었다.

Abstract

In CANDU(Canadian Deuterium Uranium) reactors, purge and discharge of moderator cover gas has been performed via vapor recovery system. The methods employed in C-14 removal are mainly based on reactions of CO₂ with absorber or adsorbent. In order to choose an optimum process, we should consider the characteristics of the process, such as, temperature, pressure, humidity etc. and its long-term safety of waste disposal. In this paper, we calculated the surface dose rate on C-14 scrubber and gas bag to estimate job-related personnel doses. Assuming that the whole C-14 scrubber was

completely replaced after one-cycle operation, and that its C-14 activity for one-cycle operation was 40 mCi, we calculated the surface dose rate at the six points of the C-14 scrubber. This calculation showed that the dose rate on the surface of cartridge was only $1.25 \,\mu Sv/hr$ because of low energy of β ray. It is concluded, therefore, that the cartridge change-out is safe because the operation of C-14 removal system causes only a small increase in dose rate.

1. 감속재 상층기체 1회 퍼지에 따른 방출량 계산

상층기체의 압력을 p, 상층기체의 부피를 V라고 하면, 주어진 압력 p에서 상층기체의 양은 상층기체를 이상기체로 간주할 경우,

$$n = \frac{pV}{RT} \tag{1}$$

와 같이 표현된다. 상층기체의 배기에 의해 Δp 만큼의 압력 강하가 있었다고 하면, 이 때 외부로 빠져나가는 상층기체의 양, Δn 은,

$$\Delta n = n_f - n_i = \frac{p_f V}{RT} - \frac{p_i V}{RT} = \frac{\Delta p V}{RT}$$
 (2)

가 되며, 이 양을 대기압 상태에서의 부피, ΔV로 환산하면,

$$\Delta V = \Delta nRT \tag{3}$$

가 된다. 상층기체의 초기 부피 V가 $7,560\ell$, 초기 압력 p가 1.238 atm, 온도가 60 \mathbb{C} 일 때, 상층기체 배기 후의 압력과 이때 배기된 상층기체의 양을 계산하면 표 1과 같다.

표 1. 상층기체	배기 후	압력과	기체량
-----------	------	-----	-----

배기 후 압력(atm)	방출 상층기체 량(ℓ)
1.21	214
1.20	291
1.19	367
1.18	444
1.17	520

2. C-14 제거장치의 표면 방사선량율 평가

원자력발전소에 설치, 운영되는 C-14 제거장치로부터 운전원의 방사선 방호를 위해서는 감속재 상층기체 포집백과 C-14 Scrubber 내에 포함되어 있는 핵종들의 방사능량 및 표면 방사선량율을 정확하게 알고 있어야 한다. 이를 위해서는 여러 가

지 평가방법들이 있으나 우선, 장비 표면의 방사선량율을 평가하기 위해서 미국 Los Alamos 국립연구소에서 개발한 MCNP4C를 사용하였다[1]. MCNP(Monte Carlo N-Particle)는 중성자와 양자, 전자에 대한 수송방정식을 몬테칼로법을 사용하여 여러 핵종들과 반응하는 입자들의 거동을 통계적으로 분석하여 방사선 차폐와 핵 임계도 및 군정수(group constant)등과 같은 해를 구하는 코드이다. 이 코드의 장점으로는 사용자가 원하는 형태의 모델을 구현할 수 있다는 점을 들 수 있다. 일반적인 코드 계산방법은 중성자나 양자, 전자 등과 같은 입자들의 거동을 Tallying에 의하여 통계적으로 분석한 후 핵적 계수를 구하는 것인데 반해, MCNP는 차폐물질을 통과한 광자와 중성자에 대한 선속을 계산한다. 이때 계산된 선속을 직접흡수선량으로 평가하기 위해서는 적절한 변환계수가 필요하다. 본 연구에서는 다음의 식과 같이 에너지 구간별로 계산된 선속, $\Phi(E)$ 와 ICRP-74의 외부피폭에 대한 선량 환산계수, DF(Dose Conversion Factor)를 사용하여 전체 에너지 구간에 대해 적분하여 방사선량을 계산하였다.

$$D = \int_{E} DF_{i} \phi(E) dE \tag{4}$$

본 장치의 표면 방사선량율은 방사성 기체 포집백과 카트리지가 내장된 Scrubber로 나누어 각각 계산하였다. 이때 방사성 기체 포집백은 감속재 상층기체의 1회 퍼지시 전량을 포집할 수 있으며, 한주기 동안 총 20회의 퍼지를 행한다고 가정하였다. 기체 포집백에 대한 표면 방사선량율 계산을 위해 감속재 상층기체의 시료를 채취하여 방사성 핵종의 농도를 분석하였으며, 이 계산 결과를 근거로 방사선원을 추정하여 포집백의 접촉 표면과 1m 떨어진 곳에서의 작업자의 유효 선량을 평가하였다. 12개의 카트리지가 내장된 Scrubber의 표면 방사선량율 계산시 카트리지에 잔류되어 있는 방사성 핵종들 중 ¹⁴CO₂를 제외한 기타 핵종들은 반감기가 짧고 에너지가 낮기 때문에 계산 대상에서 제외하였다. 아울러 20회 퍼지시 최종적으로 흡착되어 남아있는 C-14 핵종만을 대상으로 선량 평가를 수행하였다.

가. 기체 포집백의 표면선량 계산 Input 자료

• 재질: Polyvinyl chloride epoxy based modified polymer

。두께 : 0.123 mm

○ 핵종별 총 방사능량 계산(1회 방출:500ℓ, 반구형 선원으로 봄)

표 2. 감속재 상층기체의 핵종별 방사능

Nuclide	Activity(µCi)
Ar-41	2.01×10^4
Kr-79	1.26×10^{1}
Kr-85m	5.35×10^{1}
Kr-88	3.03×10^{1}
Xe-127	3.94
Xe-131m	3.94×10^{1}
Xe-133	1.11×10^{3}
Xe-133m	2.46×10^{1}
Xe-135	1.69×10^{1}
H-3	1.51×10^{6}
C-14	2.0×10^{3}

。 기하학적 구조

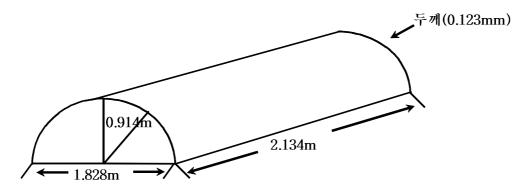


그림 1. 기체 포집백의 구조

나. C-14 Scrubber의 표면선량 계산 Input 자료

。 재질 : SUS 316L/SUS 304

SUS 316L - Mo: 3%, Cr: 18%, Ni: 8%, Fe: 70.97%, C: <0.03%

SUS 304 - Cr: 18%, Ni: 8%, Fe: 74%

◦ Cartridge 총 방사능량 : 40 mCi/1주기

● 가정:1) 1회 퍼지량:500ℓ

2) 년간 퍼지회수 : Max : 20회

3) #1 Cover Gas C-14 Activity: 4 mCi/m³

4) 평판 선원으로 가정

- ① 계산 : 4 mCi/m³ × 0.5 m³/1회 퍼지 × 20회 퍼지/주기 = 40 mCi
- 기하학적 구조
- 1) Scrubber 본체 표면에서의 선량율 계산

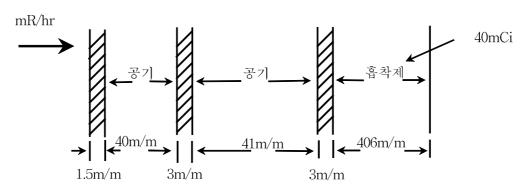


그림 2. Scrubber 본체 표면의 구조

2) Scrubber 외부 표면에서의 선량율 계산

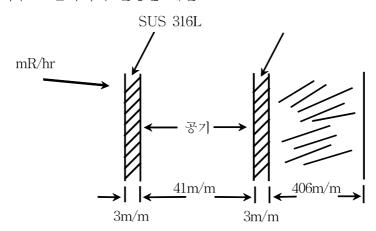


그림 3. Scrubber 외부 표면에서의 선량율 계산

3. 표면 방사선량율 계산

가. 기체 포집백의 표면 방사선량율 계산

기체 포집백의 표면 방사선량율 평가를 보수적으로 하기위해 기존의 반 원통형 모델을 원통형으로 모델링하는 대신 방사선원의 양을 두 배로 가정하였다. 이때 연속스펙트럼을 갖는 β 방사성 핵종들은 계산의 편의성과 보수성을 고려하여 최대 방출에너지로 가정하였다.

표 3. 상층기체중의 ٧ 방사선 핵종 농도 및 방출에너지

위치	Activity (μCi)	MeV	기여도
Kr-85m	5.35E+01	0.151	1.97E-03
Xe-127	3.94	0.20284	1.84E-04
Xe-131m	3.94E+01	0.16393	1.84E-03
Xe-133	1.11E+03	0.081	5.19E-02
Xe-133m	2.46E+01	0.2332	1.15E-03
Xe-135	1.69E+01	0.24979	7.91E-04
Ar-41	2.01E+04	1.293	9.40E-01
Kr-88	3.03E+01	2.39211	1.42E-03
	2.14E+04	_	1.000

표 4. 상층기체중의 β 방사선 핵종 농도 및 방출에너지

위치	Activity (μCi)	MeV	기여도
H-3	1.51E+06	0.019	9.99E-01
C-14	2.00E+03	0.156	1.32E-03
Kr-79	1.26E+01	1.626	8.33E-06
	1.51E+06		1.000

기체 포집백은 재질 성능이 개선된 PVC로 되어 있으며, 반구형 포집백의 내부 상 충부와 외부 표면 및 표면에서 1m 떨어진 위치에서의 방사선량율을 계산하였다.

표 5. 포집백의 표면 선량율

위치	표면 선량율(μSv/hr)			비고
TA	감마선	베타선	합계	비끄
선원 표면(91.4cm)	1.5508E+02 ±0.0381	1.0076 ±0.0997		1
PVC 표면(91.4123cm)	1.5507E+02 ±0.0376			
PVC 표면에서 100cm	3.1261E+01 ±0.0028			

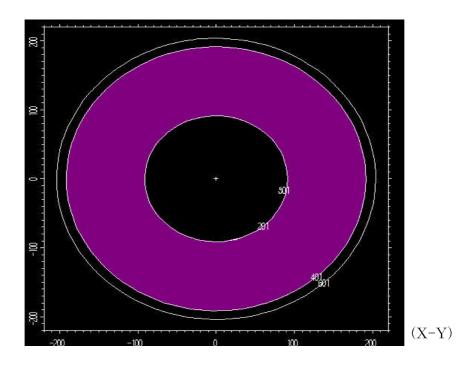
평가결과, 포집백의 접촉표면에서 시간당 약 $1.55~\mu Sv$ 정도의 선량율을 보였다. 이는 작업자가 연간 2,000시간 동안 작업을 하더라도 약 3~mSv로 연간 선량한도 20~mSv에 크게 하회하는 값이다. 하지만, 운전원의 방사선 방호 측면에서 방사선 구역으로 설정되거나 포집백 자체에 대한 차폐개념을 부여하여 관리되어야 할 것이다.

나. Scrubber의 표면 방사선량율 계산

C-14 Scrubber의 재질은 SUS 316L 및 304로 구성되어 있으며 기하학적 구조가복잡하여 계산의 용이성과 보수적인 결과 도출을 위해 원통형으로 모델링하였다. 주 핵종은 C-14으로 포집백과 마찬가지로 계산의 보수성을 고려해 최대 붕괴에너지인 0.156 MeV를 적용하여 표면 방사선량율을 계산하였다. 그 결과, Scrubber 장비 내 존재하는 C-14 선원의 표면에서는 시간당 약 $1.25~\mu Sv$ 의 방사선량율을 보였으며, 스테인레스 재질로 구성된 Scrubber 장비 외부에서는 완전 차폐로 인해 ND 값을 산출하였다.

표 6. C-14에 의한 Scrubber의 표면 선량율

위치	표면 선량율(<i>μSv/hr</i>)	비고
흡착제 표면(40.6cm)	1.247E+03± 0.0014	
(40.9cm)	±	ND^{1}
(45cm)	±	ND
(45.3cm)	±	ND
(49.3cm)	±	ND
(49.45cm)	±	ND


1) ND: Not Determined

4. 결론

C-14 제거장치의 운영에 따른 작업자의 체외피폭 선량율 평가하기 위해 Scrubber 본체와 Scrubber를 내장하고 있는 C-14 제거장치의 외부 표면 방사선량율을 각각계산하였다. C-14 Scrubber를 한 주기 사용한 후 전량 교체한다는 전제하에 C-14 방사능이 40 mCi가 흡착되어 있는 것으로 6개의 지점에서 표면 선량율을 계산하였으며, 그 계산결과 낮은 에너지의 β선 특성으로 인해 카트리지의 흡착제 표면에서만 약 1.25 μSv/hr로 매우 낮은 선량율을 나타났다. 따라서, 사용 후 카트리지의 교체나 보수 등으로 인한 접근에 따른 운전원의 체외피폭은 크게 고려하지 않아도 될 것으로 판단된다.

참고문헌

1. Judith F. Briesmeister, "MCNP-A General Monte Carlo N-Particle Transport Code Version 4B", LA-12625, LANL (1997)

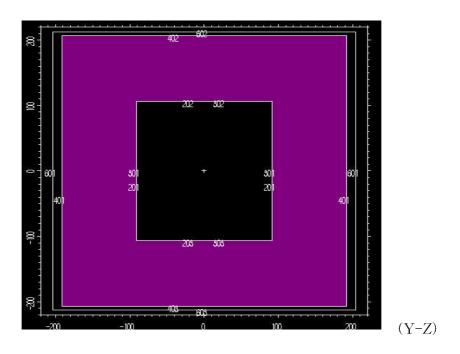


그림 4. 기체 포집백의 표면 방사선량율 계산용 MCNP모델

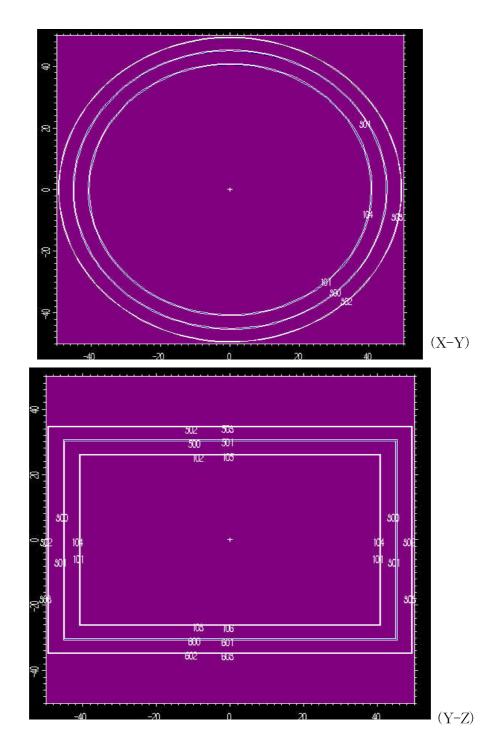


그림 5. C-14 Scrubber 표면 방사선량율 계산을 위한 MCNP 모델