Preliminary Analysis of Large Scale Air Injection Experiment on Coolant Circulation Flow in the Reactor Cavity under External Vessel Cooling

,

Abstract

As part of study on thermal hydraulic behavior in the reactor cavity under external vessel cooling in the APR 1400, preliminary analysis of steady state on further large scale experiment using air injection method and analysis on the actual plant have been performed to investigate coolant circulation flow rate between the reactor vessel and the insulation material using the RELAP5/MOD3 computer code. The RELAP5/MOD3 results of preliminary analysis on the air injection experiment have shown that air injection distribution is not effective on coolant circulation rate between reactor vessel and insulation material. The coolant circulation flow rate of the air injection case is four times higher than that of heat flux input condition. The change of coolant exit to lower position leads to increase in coolant circulation mass flow rate, but increasing rate is decreases. In preliminary analysis on the APR 1400, the change of coolant exit to lower position is effective on coolant circulation flow rate, but the variation trend is not same as the air injection experimental case.

1.

가 (reactor vessel failure)

(external vessel cooling)

,

			가	
			APR 1400	
1/22			가	
	APR 1400		1/2	1/2
sector				
1-3				
APR 1400		APR 1400		
	5,6			
	APR1400		1/2	(
) 1/2		
			,	,
	3	, ICI(In-Core	Instrumentation)	shear key ,
			stainlass, staal	
1/2(180 °)			Stall liess Steel	
1,2(100)	·	Polv-carbona	ate .	
		,	. APR 1400	
	61 ICI	32	1/2	4
shear key	2 1/2			
	,			(void fraction)
,	가			,
(,가)	,	,	

3. RELAP5/MOD3

4	APR 1400		RELAP5/
MOD3			
RELAP5	가	가	

•

.

가 . RELAP5/MOD3

가 . , 1 , , , APR 1400 RELAP5 4 가 . 가 vessel heat structure volume APR 1400 geometry , APR 가 1400 5,6 . APR 1400 geometry RELAP5 [13]. RELAP/MOD3 가 가 APR 1400 RELAP5/MOD3 APR 1400 가 . 가 . 4.

2 가

 RELAP5/MOD3
 .
 0.5 m^2 ,

 0.25 m^2 ,
 0.25 m^2 ,

 0.56 m .

 2
 7 +

 2
 7 +

 2
 7 +

 2
 7 +

2)r , 4 7h .

가 가 가 . 4 RELAP5/MOD3 0.56 m, 20 °C . 가 가 . 56 RELAP5/MOD3 0.15 m², 0.15 m², 0.15 m², 20 °C . 5 가 가 . 6 가 · , 가 가 가 RELAP5/MOD3 APR 1400 . 7 APR 1400 RELAP5/MOD3 0.5 m², 95 °C . 0.5 m², 0.5 m²,

6 RELAP5/MOD3 0.5 7 8 APR 1400 7 8 APR 1400 0.3 7

APR 1400

RELAP5/MOD3 2 7 2 7 2 7

.

,

가 가

5.

- 1. T. G. Theofanous et al., "In-Vessel Coolability and Retention of a Core Melt," DOE/ID-10460, July 1995
- T. G. Theofanous et al., "In-Vessel Coolability and Retention of a Core Melt," Nuclear Engineering & Design 169, pp. 1-48, 1997
- O. kymalainean et al., "In-Vessel Retention of Corium at the Loviisa Plant," Nuclear Engineering & Design 169, pp. 109-130, 1997
- 4. , " In-Vessel Retention ", , 1998
- 5. T. N. Dinh and R. R. Nourgaliev, "Turbulence Modeling for Large Volumetrically Heated Liquid Pools," Nuclear Engineering & Design 169, pp. 131-150, 1997
- 6. T. N. Dinh, R. R. Nourgaliev, and B. R. Sehgal, "On Heat Transfer Characteristics of Real and Simulant Melt Pool Experiments," Nuclear Engineering & Design 169, pp. 151-164, 1997
- 7. S. H. Yang et al., "An Experimental Study of Pool-Boiling CHF on Downward Facing Plates," J. of KNS, V. 26 (4), pp. 493-501, 1994
- 8. , " 7[†]," 1994
 - pp. 501-506, , 1994 10 29
- 9. The RELAP5 Development Team, "RELAP5/MOD3 Code Manual," NUREG/CR-5535, INEL95/0174, August 1995
- 10. ," 가

, 2002 5 22-24

,"

11. , "Analysis of Coolant Flow in the Reactor Cavity under External Vessel Cooling," '02 , , 2002 10 24

Dograa	Heat Flux	$\Lambda rop (m^2)$	Heat Flux*Area	Steam Mass Flow	Air mass Flow
Degree	(MW/m ²)	Alea (III)	(MW)	Rate (m ³ /hr)	Rate (kg/s)
0-10	0.045	0.0788	0.0050	130.95	0.0423
10-20	0.083	0.2340	0.0219	388.86	0.1255
20-30	0.105	0.3821	0.0516	634.96	0.2050
30-40	0.166	0.5186	0.1263	861.77	0.2782
40-50	0.321	0.6394	0.2599	1062.39	0.3429
50-56.6	0.492	0.4788	0.2524	795.63	0.2568
56.6-70	0.563	1.0814	0.6974	1796.80	0.5800
70-80	0.727	0.7880	0.6224	1309.25	0.4226
80-90	1.272	0.8324	1.0585	1383.07	0.4464
SUM		5.0345	3.0964	8365.16	2.7001

RELAP5/MOD3

	Water Circulation Mass Flow	
	Rate (kg/s)	
Non-uniform Injection Case	366.9	
Uniform Injection Case	359.6	

3.

Conditions	Supplied Water Injection	Water Circulation Mass	
	Temps(°C)	Flow Rate (kg/s)	
Air Injection	20	627.7	
Air Injection	80	534.2	
Air Injection	100	184.6	
Steam Injection	20	308.6	
Steam Injection	80	252.5	
Steam Injection	100	58.4	
Heat Flux	20	154.1	
Heat Flux	80	134.2	
Heat Flux	100	44.6	

RELAP5/MOD3

Water Inlet	Air Outlet	Water Outlet	Water Circulation
Area (m ²)	Area (m ²)	Area (m ²)	Mass Flow Rate
			(kg/s)
0.5	0.25	0.25	627.7
0.125	0.25	0.25	360.7
0.0625	0.25	0.25	264.6
0.5	0.125	0.125	432.0
0.5	0.0625	0.0625	134.3
0.125	0.125	0.125	240.0
0.15	0.15	0.15	253.3
0.1	0.1	0.1	203.9
0.0625	0.0625	0.0625	174.6
0.15	0.15	0.15	253.3
0.05	0.05	0.05	121.9
0.1	0.15	0.15	300.0
0.05	0.15	0.15	199.7
0.15	0.1	0.1	209.8
0.15	0.05	0.05	135.5

5.

Water Outlet Position	Water Circulation Mass
from the Water Level (m)	Flow Rate (kg/s)
0.56	253.3
0.84	327.5
1.12	415.8
1.40	520.1
1.68	524.1
1.82	524.1
2.24	530.3
2.48	533.4

RELAP5/MOD3

Water Outlet	Bottom of Gap	Bottom of Pool	Top of Gap	Top of Pool
Position from the	(MPa)	(MPa)	(MPa)	(MPa)
Water level (m)				
0.56	0.1228	0.1323	0.1066	0.1020
0.84	0.1254	0.1292	0.1033	0.1003
1.12	0.1291	0.1346	0.1045	0.0987
1.40	0.1334	0.1419	0.1061	0.0998
1.68	0.1333	0.1419	0.1057	0.0998
1.82	0.1333	0.1420	0.1054	0.0998
2.24	0.1333	0.1421	0.1051	0.0998
2.48	0.1333	0.1422	0.1047	0.0999

7. APR 1400

Water Outlet Position	Water Circulation Mass
From the water level (m)	Flow Rate (kg/s)
0.6	564.2
1.52	567.3
2.44	535.9
3.36	714.3
4.28	618.6
4.74	594.4

2.

ICI shear key

(

APR 1400

)

(APR 1400)

4.

 $(= 100 \ ^{\circ}C, = 0.56 \ m)$

6.

