TROI

An Investigation on the Influence of Water Depth and Melt Composition on a Steam Explosion in the TROI Experiments

Abstract

In the recent TROI experiments, steam explosion experiments have been performed using corium melt of two different compositions and zirconia melt. The compositions $(UO_2 : ZrO_2)$ of the corium were 70 : 30 and 80 : 20 in weight percent and the mass of the corium was $10 \sim 20$ kg. The water depth was 130cm and 67cm for the experiments. In case of the interaction between the corium melt and water pool of 130cm in depth, no steam explosion occurred. With a 67cm deep water pool, steam spikes were observed with corium melt of two different compositions. In the interaction between the zirconia melt(~5.43kg) and the 67cm deep water pool, an explosive steam explosion occurred accompanying pressure waves of 5.5MPa and a dynamic load greater than 500kN. It is thought that a steam explosion would not be triggered in a deep water pool since the melt could be cooled down and then solidified before the contact between the melt and the vessel bottom due to the long traveling through water. As varying the composition of the melt, the exposivity of zirconia is found to be much higher than that of corium. The hydrogen gas which was commonly believed to suppress a steam explosion was negligibly generated (less than 2% of the FARO experiment), irrelevantly to the occurrence of a steam explosion.

2003

가 가 . [5, [1], [2, 3, 4], 6, 7], [8, 9, 10] , [11]. , [4] ANL ZREX JRC-Ispra FARO/KROTOS [5, 6, 7] zirconia TROI 가 zirconia [12, 13, 14, 15]. TROI 2. TROI TROI 1 212°C 20 (>3000K) 가 가 water jacket 가 가 가 150kW, 50kHz 가 . , 가 가 , 가 1 가 2 (IRCON 1500~3500°C) 가 (grey-body condition) 가 K-type (Piezoelectric pressure transducer, PCB Piezotronics Inc., Model 112A, maximum . range: 60MPa 20MPa)가 . (Druck Co., Model PMP4060, maximum range: 3.5MPa, Rosemount model 1511: 2.0MPa)7 , VXI system(Agilent Technology) 가 CCD Phantom V4.0 512×512 pixel 1000 frames/sec CCD 가 (zirconia) . 가 가 Zr 가 Zr 가 zirconia 가

1.

가

가

가

가

가

.

가

, 7 plug , plug , puncher , triggering . , , , , , , ,

,

.

3. TROI

zirconia			TROI-1	19 TR	OI-26	8	
. TROI-19	UO_2	ZrO_2	80:20		~ 20kg		,
130ci	m			. TROI-20	UO_2 :	$\mathrm{ZrO}_2=70:30$)
TR	OI-19				. TROI-21	l	80 : 20
	10kg			130cm			
. TROI-22	TROI-23		TROI-21			. TROI-2	4 ~ TROI-26
			,	67cm			. TROI-24
zircon	ia	, TROI-	-25	70 : 30			, TROI-26
80:20)				. TROI-19	TRC)I-26
		2	3				

3.1. TROI-19

TROI-19 ZrO_2 36.3kg (80:20) UO_2 21.1kg 130cm , 2 UO_2 IRCON , 가 2 3200K , 가

		가					3200F	K	
			3			,	V	oid 가	
					가				
			. 4				,	51K	
가									가
가							2	5	
								(0.	71mm
))	(7%)				0.526g	FARO	[5]	
			. FARO	157kg			3	800g	가
		,			FARO	1.3%			

3.2. TROI-20

 TROI-20
 30kg
 UO2
 ZrO2
 (70:30)

 19.7 kg
 ,
 130cm
 ,

가 2 6 IRCON . 가 3200K 가 가 . 7 TROI 70 : 30 67cm [14, 15], 가 () 8 가 180K ,

2 9 . 2 ~ 4.75mm (48%) , (0.71mm) 9% .

3.3. TROI-21 ~ TROI-23

 TROI-21 ~ TROI-23
 7 TROI-23

 . TROI-21
 2
 .

 TROI-18
 17kg
 80 : 20
 (UO2 : ZrO2)
 10.4kg
 ,

 . 10
 .
 .
 3600K

. 11 . 가

80:20 TROI . 가 가 (67cm) [15], 12 . 3 가 105K . , 13 (8%), 0.288g FARO 1.4% . .

3.4. TROI-24

TROI-24 9.5kg zirconia 5.43kg 67cm 14 . 3600K data . 15 data 5.5MPa 16 data 500kN zirconia 가 . 17 . 가 21K 18 . 35K 가 .

 7
 .

 3
 19
 . (0.71mm)

 ,
 6.35mm
 (52%)

 zirconia
 .

3.5. TROI-25

TROI-25										15.0kg
70 : 30	$(UO_2 : ZrO_2)$	2)			9	.005kg			,	67cm
			•	20						
3500H	K		•	21					,	
가								steam	spike 가	
data	steam spike						,		25kN	
steam sp	pike 가			•		22	23			
24							,	90K	가	
			3		25					steam spike
		15%								
(20%)						(10)%)		[14, 15].

.

.

3.6. TROI-26

TROI-26			80 : 20				•		17.0kg
80 : 20	(UO	O_2 : ZrO ₂)			12.31kg		,		67cm
				26					
3300K				27			,		가
						steam spike	가		
data	L	steam spike				,		15kN	
			28			. 29			
	,	27K			30				
, 8	85K	가						3	31
			steam sp	oike			13%		
TROI-2	.5								
			0.0	069g (FA	ARO	0.5%)			

4.

TROI-19 TROI-26

• (130cm) TROI-19 ~ TROI-23

.

•

)	
TROI-24	,
. ziı	rconia
TRO	DI-25 steam
TRC	DI-26
e 가 .	[13, 14, 15]
)	
가	FARO
б	
) TROI-24 . zi: TRO TRO

conversion ratio

- 1. K. MATSUMURA and H. Nariai, "Self-Triggering Mechanism of Vapor Explosions for a Molten Tin and Water System," *Journal of Nuclear Science and Technology*, **33**, *No.4*, 298-306 (1996).
- 2. D. E. MITCHELL, M. L. Corradini and W. W. Tarbell, "Intermediate scale steam explosion phenomena: Experiments and analysis," SAND81-0124, SNL(1981).
- 3. N. YAMANO, Y. Maruyama, T. Kudo, A. Hidaka and J. Sugimoto, "Phenomenological Studies on Meltcoolant Interactions in the ALPHA Program," *Nuclear Engineering and Design*, **155**, 369~389 (1995).
- 4. D. H. CHO, D. R. Armstrong and W. H. Gunther, "Experiments on interactions between Zirconiumcontaining melt and water," NUREG/CR-5372 (1998).
- 5. D. MAGALLON, I. Huhtiniemi, and H. Hohmann, "Lessons learnt from FARO/TERMOS corium melt quenching experiments," *Nuclear Engineering and Design*, **189**, 223-238 (1999).
- 6. D. MAGALLON and I. Huhtiniemi, "Corium melt quenching tests at low pressure and subcooled water in FARO," *Nuclear Engineering and Design*, **204**, 369-376 (2001).
- 7. I. HUHTINIEMI and D. Magallon, "Insight into steam explosions with corium melts in KROTOS," *Nuclear Engineering and Design*, **204**, 391-400 (2001).
- 8. K. M. BECKER and K. P. Lindland, "The Effects of Surfactants on Hydrodynamic Fragmentation and Steam Explosions," KTH-NEL-50, RIT in Sweden(1991).
- 9. M. F. DOWLING, B. M. Ip and S. I. Abdel-Khalik, "Suppression of Vapor Explosions by Dilute Aqueous Polymer Solutions," *Nuclear Science and Engineering*, 113, 300-313 (1993).
- K. H. BANG and G. D. Jeun, "Minimum Film Boiling Temperatures for Spheres in Dilute Aqueous Polymer Solutions and Implications for the Suppression of Vapor Explosions," *Journal of Korean Nuclear Society*, 27, *No.4*, 544-554 (1995).

11. J. H. SONG, I. K. Park, Y. J. Chang, Y. S. Shin, J. H. Kim, B. T. Min, S. W. Hong and H. D. Kim, "Experiments on the interactions of molten ZrO2 with water using TROI facility," *Nuclear Engineering and Design*, 213, 97-110 (2002).

12.	, "TROI	$ZrO_2/$	FCI	,"		
	(2001).					
13.	, " ZrO_2 UO ₂ / ZrO_2	FCI			,,,	
	(2001).					
14.	, "TROI					,"
		(2002).				
15.	, " TROI			,,,		
	(2002).					

1. Sensor descriptions in the TROI tests

Parameter	Sensing location	Sensor descriptions		
Melt temperature	Top window	IRCON pyrometer (1500 ~ 3500°C)		
Coolant temperature	IVT101 ~ IVT106	1.0mm dia., K-type thermocouple		
Melt velocity	IVT201 ~ IVT208	0.5mm dia., K-type thermocouple		
Dynamic pressure in the coolant	IVDP101 ~ IVDP106	PCB model 112A <60MPa		
Dynamic load at the test section bottom	IVDL101	PCB model W217B <500kN		
Atmosphere temperature in the pressure vessel	PVT001 ~ PVT005	1.0mm dia., K-type thermocouple		
Static pressure in the furnace vessel	FVSP001	Rosemount model 1511 < 2.0MPa		
Static pressure in the pressure vessel	PVSP002, PVSP003	Druck model PMP4060 <3.5MPa		
Dynamic pressure in the pressure vessel	PVDP004, PVDP005	PCB model 112A <20MPa		
Gas Sampling for Hydrogen detection	GAS005	Gas sampling bottle		
FCI phenomena visualization	13 windows available	30pps videos and 1000pps video		

	TROI test number	Unit	19	20	21	22
Melt	Initial Charge Composition	[w/o]	79/20/1	69/30/1	79/20/1	79/20/1
	UO2 / ZrO2 /Zr	[]				
	Temperature	[K]	3200(?)	3200	3000	2900
	Charged mass	[kg]	36.263	30.0	17.0	17.0
	Initiator mass	[kg]	0.1	0.1	0.1	0.1
	Released mass	[kg]	21.065	19.715	7.320	9.910
	Plug/puncher diameter	[cm]	10.0/6.5	10/6.5	8.0/6.5	8.0/6.5
	Initial jet diameter	[cm]	7.7	-	8.0	7.4
	Free fall in gas	[m]	3.2	3.2	3.2	3.2
Test	Water mass	[kg]	367	367	367	367
Section	Initial height	[cm]	130	130	130	130
	Final height	[cm]	-	-	-	-
	Cross section	[m2]	0.283	0.283	0.283	0.283
	Initial temperature	[K]	295	303	298	297
	Sub-cooling	[K]	78	70	75	76
Pressure	Initial pressure(air)	[MPa]	0.118	0.108	0.110	0.110
Vessel	Initial temperature	[K]	297	298	296	295
	Free volume	[m3]	8.032	8.023	8.023	8.023
Results	Maximum PV pressurization	[MPa]	0.035	0.037	0.011	0.025
	Time to reach peak	[sec]	2	2	10	3
	Maximum PV heat-up	[K]	51	180	50	160
	Time to stabilize	[sec]	20	10	10	15
	Maximum water heat-up	[K]	22	30	20	13
	Steem explosion	[sec]			15 NO	10 NO
	Dunamia prossura paak		NO	NO	NO	NO
	Duration		-	-	-	-
	Impulse	kN				
	Duration	msec	_	_	_	_
Debris	Total	[kg]	21.065	19.715	7.320	9.910
	>6.35mm	[kg]	3.210	1.955	-	-
	4.75mm ~ 6.35mm	[kg]	2.635	2.675	-	-
	2.0mm ~ 4.75mm	[kg]	9.340	9.520	-	-
	1.0mm ~ 2.0mm	[kg]	3.535	2.860	-	-
	0.71mm ~ 1.0mm	[kg]	0.940	0.970	-	-
	0.425mm ~ 0.71mm	[kg]	0.880	0.985	-	-
	<0.425mm	[kg]	0.525	0.750	-	-
H2 gas	Before/After the interaction	[ppm]	86/801	Not	Not	Not
	Mass	[g]	0.526	measured	measured	measured
Note			Medium	Medium	Small	Same as
			crucible,	crucible,	crucible,	TROI-21
			water	water	water	
			130cm	130cm	130cm	
			150011	150011	150011	

2. Initial condition & results for the TROI tests (TROI-19 ~ TROI-22)

* NO : No steam explosion

	TROI test number	Unit	23	24	25	26
Melt	Initial Charge Composition	[w/o]	79/20/1	0/99/1	69/30/1	79/20/1
men	UO2 / ZrO2 / Zr	[11/0]	19/20/1	0/ 2 2/ 1	00/00/1	1 20/1
	Temperature	[K]	3600	3600	3500	3300
	Charged mass	[kg]	17.0	9.5	15.0	17.0
	Initiator mass	[kg]	0.1	0.1	0.1	0.1
	Released mass	[kg]	10.385	5.430	9.005	12.310
	Plug/puncher diameter	[cm]	8.0/6.5	8.0/6.5	8.0/6.5	8.0/6.5
	Initial jet diameter	[cm]	7.4	3.2	8.0	4.5
	Free fall in gas	[m]	3.2	3.8	3.8	3.8
Test	Water mass	[kg]	367	189	189	189
Section	Initial height	[cm]	130	67	67	67
	Final height	[cm]	117	60	64	62
	Cross section	[m2]	0.283	0.283	0.283	0.283
	Initial temperature	[K]	293	288	287	283
	Sub-cooling	[K]	80	85	86	90
Pressure	Initial pressure(air)	[MPa]	0.110	0.110	0.110	0.106
Vessel	Initial temperature	[K]	296	291	291	288
	Free volume	[m3]	8.023	8.032	8.023	8.023
Results	Maximum PV pressurization	[MPa]	0.020	0.015	0.021	0.029
	Time to reach peak	[sec]	3	3	3	5
	Maximum PV heat-up	[K]	105	35	90	85
	Time to stabilize	[sec]	10	10	10	25
	Maximum water heat-up	[K]	8	21	22	27
	Time to stabilize	[sec]	5	20	30	35
	Steam explosion		NO	SE	SS	SS
	Dynamic pressure peak	[MPa]	-	5.5	0.2	-
	Duration	msec	-	1.0	1.5	-
	Impulse	kN	-	>500	25	15
	Duration	msec	-	7.0	10.0	20.0
Debris	Total	[kg]	10.385	5.430	9.005	12.310
	>6.35mm	[kg]	1.250	2.805	0.705	1.095
	4.75mm ~ 6.35mm	[kg]	1.505	0.325	1.030	1.720
	2.0mm ~ 4.75mm	[kg]	4.475	0.865	4.135	4.980
	1.0mm ~ 2.0mm	[kg]	1.825	0.595	1.285	2.215
	0.71mm ~ 1.0mm	[kg]	0.500	0.180	0.495	0.720
	0.425mm ~ 0.71mm	[kg]	0.490	0.240	0.655	0.870
	<0.425mm	[kg]	0.285	0.420	0.700	0.710
H2 gas	Before/After the interaction	[ppm]	20/438	19/1335	49/14	28/105
	Mass	[g]	0.288	0.877	0.009	0.069
Note			Same as	ZrO2	70:30	80:20
			TROI-22	67cm	67cm	67cm

3. Initial condition & results for the TROI tests (TROI-23 ~ TROI-26)

* NO : No steam explosion, SE : Steam explosion, SS : Steam spike

1. Schematic diagram of TROI facility

2. Melt temperature in the TROI-19 test

3. Photograph of melt injection in the TROI-19 test

4. Temperatures in the pressure vessel in the TROI-19 test

6. Melt temperature in the TROI-20 test

5. Sieved debris distribution in the TROI-19 test

7. Photograph of melt injection in the TROI-20 test

8. Temperatures in the pressure vessel in the TROI-20 test

10. Melt temperature in the TROI-23 test

12. Temperatures in the pressure vessel in the TROI-23 test

9. Sieved debris distribution in the TROI-20 test

11. Photograph of melt injection in the TROI-23 test

13. Sieved debris distribution in the TROI-23 test

14. Melt temperature in the TROI-24 test

16. Dynamic load in the TROI-24 test

18. Temperatures in the pressure vessel in the TROI-24 test

15. Dynamic pressures in the TROI-24 test

17. Water temperatures in the interaction vessel in the TROI-24 test

19. Sieved debris distribution in the TROI-24 test

20. Melt temperature in the TROI-25 test

22. Dynamic pressures in the TROI-25 test

24. Temperatures in the pressure vessel in the TROI-25 test

21. Photograph of melt injection in the TROI-25 test

23. Dynamic load in the TROI-25 test

25. Sieved debris distribution in the TROI-25 test

26. Melt temperature in the TROI-26 test

28. Dynamic load in the TROI-26 test

30. Temperatures in the pressure vessel in the TROI-26 test

27. Photograph of melt injection in the TROI-26 test

29. Water temperatures in the interaction vessel in the TROI-26 test

31. Sieved debris distribution in the TROI-26 test