The Correction of Counting Efficiency on Cylindrical Samples for Neutron Activation Analysis

, , , , ,

150

Eu - 152

,	SOLANG				,			
		가		NI	ST	SRM	2711,	
Montana Soil		가						

Abstract

The difference between standard point source emitting gamma-rays and the matrix as well as the geometry of sample is one of the systematic errors in neutron activation analysis using absolute quantitative method and additional correction is indispensible for accurate analysis. This study is to establish methodology for simple correction by the evaluation of gamma-ray attenuation ratio in practical sample and by solution of Eu-152. To validate this method, the results between experimental values in water matrix and calculated value by SOLANG program are compared and coincided within the measurement uncertainty. In addition, NIST SRM 2711, Montana Soil with two different geometry are analyzed and the results are evaluated.

1.

, 80	가	k₀ [1]. NAA #1 Au-198	2
,			[2]
		XCOM	[3]
•	L. Moens NIST	SOLANG	[4]
2.			
2.1			가
	Ν	NIST SRM 2711, Mont	ana Soil
	4 cm py	rex beaker 1 cm	
FC & C OPTEC	Isotope Product I	Laboratory	(ML 7500 series)
Cap 13.7 o	cm	40,000 3	
-		ХСОМ	coherent
scattering			
Soil 0.65		. NIST S	RM 2711, Montana
2.2	SOLANG		
10 mg/mL .	NIST Eu 9.3	NAA #1 Eu-	100 152m
2 5	D	(6.2 mi	n, 15.7 mm)

Eu D 4,000 , () 14 mm . . SOLANG 3% [4]. . 14 mm . 2.3 B (6.2 mm, 7.4 mm) D (6.2 mm, 15.7 mm) NIST SRM 2711, Montana Soil NAA-#1 10 . 6 mm, 14 mm . Au-wire . • 100 1600 keV . . 1) (1) = $[1 - Exp(-\mu_{lin} \cdot t)]/(\mu_{lin} \cdot t)$ $(cm^{-1}), t$ μ_{lin} (cm) • 2) Eu-152 fitting • 3) 2) XCOM Geometry . 4) . 5) (1) Geometry •

3.

3.1

			XCOM	Fig.	1
. Fig. 1		59, 122, 661	l, 1173, 1332 k	tev	
C		•		가フ	ł
		Fig. 1(b)	NIST SRM	2711, Montar	na
			fitting		
0.995			(2)		
	(3)			
$I/I_0 = Exp(- \mu_{lin} \cdot t)$	= 0.0317 (Ln)	x) + 0.7342			(2)
	t 1 cm	(.	3)		
$\mu_{lin} = Ln \{0.0317($	(Ln x) + 0.73	42}			(3)
x (k	eV)	(2)			
	,				(1)
3.2					
Eu-152			SOLAN	G	,
Fig. 2		У		(2s)	
778 keV 1112 keV			3%		
			5		1 2%
					10%,
	15%				
				•	
2.2					
3.3 E 150		6			
Eu- 152	14	6 mm			
·	14 mm		F1g. 3		
En 152	0.8				Table 1
Eu-132	NIST SPA	1 2711 Mon	utana Soil		
As Sh Na K		<i>1 2/11</i> , 1010			•
110, 00, 11a IX	Sm. La S	Sc			
	~, L u k				
-					

[5] 7 (Referee method)

가

5.

- [1] F. De Corte, ""The k_0 -Standardization Method a Move to the Optimization of NAA"", Rijksuniversiteit Gent, 1987.
- [2] K. Debertin, R.G. Helmer, "Gamm- and X-ray Spectrometry with Semiconductor Detectors" Elsevier Science Publishers B. V., 1988.
- [3] M.J. Berger, "Photon Cross Sections Database NIST Standard Reference Database 8(XGAM)" March 1998, Last Update, Nov. 1999.
- [4] L. Moens, J. De Donder, LIN Xi-lei, F. De Corte, A. De Wiselaere, A. Simonits, J. Hoste, "Calculation of the Absolute Peak Efficiency of Gamma-ray Detectors for Different Counting Geometries" Nucl. Instr. and Meth. 187, 451-472, (1981)
- [5] F. L. Bronson, "Validation of the Accuracy of the LabSOCS Software for Mathematical Efficiency Calibration of Ge Detectors for Typical Laboratory Samples" JRNC, 255(1), 137-141, (2003).

Fig. 1. Attenuation ratio for 1 cm thick sample matrix, (a) water (b) NIST SRM 2711, Montana Soil

Fig. 2. Comparison between measured and calculated value by SOLANG

Fig. 3. Results of counting efficiency variation using water and Eu-152

Element	Nuclide	Certified Value	6 mm thick			14 mm thick		
			analytical	Correction	corrected	analytical	Correction	corrected
			value	factor	value	value	Factor	value
Sm	Sm - 153	(5.9)	5.66 ± 0.15	1.06	5.99 ± 0.16	4.94 ± 0.16	1.16	5.71 ± 0.18
La(487keV)	La- 140	(40)	37.0 ± 1.11	1.03	38.0 ± 1.1	33.4 ± 0.5	1.12	37.3 ± 0.5
As	As-76	105 ± 8	105 ± 4	1.02	107 ± 4	94.3 ± 5.1	1.11	105 ± 6
Sb	Sb-122	19.4 ± 1.8	19.9 ± 1.1	1.02	20.4 ± 1.1	17.7 ± 0.5	1.11	19.7 ± 0.5
Sc	Sc-46	(9)	9.17 ± 0.39	1.01	9.30 ± 0.39	8.04 ± 0.16	1.09	8.86 ± 0.18
Na(%)	Na- 24	1.14 ± 0.03	1.15 ± 0.03	1.01	1.16 ± 0.03	1.02 ± 0.03	1.09	1.12 ± 0.03
K(%)	K-42	2.45 ± 0.08	2.40 ± 0.07	1.00	2.41 ± 0.07	2.16 ± 0.13	1.09	2.35 ± 0.15
La(1596keV)	La- 140	(40)	38.2 ± 1.3	1.00	38.3 ± 1.3	34.5 ± 0.8	1.08	37.4 ± 0.9

Table 1. The analytical results of NIST SRM 2711, Montana Soil, including counting efficiency correction(unit : mg/kg)

* Values in parenthesis stand for reference value