6

Test Results of Dynamic Control Rod Reactivity Measurements Method for LWRs

ABSTRACT

Recently, KEPRI has developed the Dynamic Control rod Reactivity Measurement (DCRMTM) methodology to measure the worths of control rod bank and safety rod bank which should be verified during the Low Power Physics Test (LPPT). DCRM has been applied to measure the worths of total 27 banks of six different nuclear power plants, including 2-and 3-Loop WH reactors and Korea Standard Nuclear Plants. The most sensitive part in the method is how to extract the background signals from the original data. To solve it, a simple approach reflecting the characteristic of dynamic reactivity was developed. Final results of 27 cases show that the average and standard difference between measurements and the estimations of core design code is 3.6%, 2.5% respectively, while the current rod worth measurement method 4.3% and 3.2%. Maximum error also decreases from 12.8% to 9%. It takes about 15 minutes to measure one rod bank. From the all observations, one knows definitely that DCRM can be an appropriate method to substitute the current boron dilution and rod swap method for measuring the rod worth.

Ι.

critical path

.

10

20

	Method)			, ,	(10	(RSM, R	od Swap
						7	' ŀ
	(DCRM, Dynamic (DDRCS, Direct Digital F	: Contr Reactiv	ol rod Re ity Compu	activity M ter Syster	leasuremer n)	ıt)	[1-3]
	DCRM 2 8~	9 가	,	가	가	ı	
	Measurement)' ^[4] DRMWM (Dynamic Rea /	(WH) Ele activity	가 ectric Powe Measure	DRWI DRWI er Resear ment of	M (Dynan ch Center Rod Wort	nic Roc (EPRC) h) ^[5]	l Worth 가
	3-loop)		6	(WH	2-loop,
	・ 7 4.2 3.1%, 2.0% . 1	6 %,	가 3.	27 0% 5	D	OCRM	15
11.			·				
	가.						
	/ ,						가 .
	Conversion Factor)가	1	1	([DRCF, Der	isity-to-F 가	Response
	, , Factor) .		(DSCF, Dy	namic-to-S	Static Co	onversion
	DI	$RCF^{Q}(t)$	$\equiv \frac{\sum_{n=1}^{N} \Delta V_n W_n}{\sum_{n=1}^{N} \Delta V_n W_n}$	$\frac{V_n^Q \sum_{g=1}^2 \kappa \sum_{fg}^n (t)}{\sum_{g=1}^2 \kappa \sum_{fg}^n (t_0)}$	$\frac{f_g^n(t)}{f_g^n(t_0)},$		
	DS	$CF^Q_{Simulat}$	$_{ed}(z=t_z)=$	$\frac{\rho_{RAST(ANC,R}^{Static}}{\rho_{INVERSE}^{Dynamic,Simul}}$	$\frac{1}{2OCS}(Z)$		

, ['] .

. [1] DCRMTM INVERSE , DSCF, DRCF 가 . 2 . DRCF 2 [6] , DORT DRCF **가** [7,8] , RAST-K (ANC^[9], ROCS^[10]) . . DSCF 가 RAST-K 가 .

INVERSE DSCF . 가 INVERSE . INVERSE .

. 가 가 3 (RAST-K) ANC, ROCS pcm 6 ARO 42 , RAST-K 가 [1] 10⁻³ , 0.010 , 3pcm, 8pcm

.

	BANK			/
WH	30	0.001	0.01	2.5pcm/8.0pcm
KSNP	12	0.000	0.001	1.0pcm/2.0pcm

[2] KSNP SHUTDOWN BANK A 가 . 가 0.000, 0.001 ROCS . . , RAST-K 7, 7, .

2002 3 2003 3 6 (KSNP 2 , 4) DCRM WH 2-Loop, 3-Loop Framatome . 가 27 . KSNP 5 . 1 (DDRCS) OFF-LINE 가 , 30 . 2 electrometer ۶۲ 12bit . DCRM CE 가 가 KSNP 2

.

[2] 가 가 DCRM 가 [2] 가 DCRM 가 가 DCRM , 가 . , DCRM RSM . RSM 7 4.2%, DCRM 3.1%, 가 가 3.0%, 2.0%, 9% 12.8%

[3] CASE 3 CC

.

.

.

. [3]

가 가 , 가) () 가 가 가 가 가 가

.

Ш.

가 가

.

가 5 1 30 CE KSNP 가

References

1.	и 1					,"		
	2003	,	1	(A), (200)3).			
2.	,			",		2002		
	1	1	(C),	(2002).				
3.	, , , , , , , , , , , , , , , , , , , ,				"		200)2
	,	1	(B),	(2002).				
4.	Y. A. Chao, et al., "Dyn (2000).	amic R	od W	orth Meas	surement," Nuc	cl. Tech.	, 132,	403
5.	D. F. Kastanya, I. Arian Worth Measurement Ca Management. II, Myrtle	i and F Ilculatio Beach	P. J. T onal M ח, AN	urinsky, " Methodolo S, 14-65,	Verification of gy," Advances (1997).	Dynami in Nucle	ic Rod ear. Fue	el
6.				2	DORT	3	TORT	
	," 20	001			(2001).			
7.	, " NEM/#	ANM			, II ,		200)2
	,	1	(A), 2	217, (2002	2).			
8.	, "NEM				-			
	フト,"			1999		,	1	(A)
	(1999).							
9.	Y. S. Liu, et al., "ANC-A	Westi	ngho	use Advan	nced Nodal Con	nputer (Code,"	

- WCAP-11596-P-A (1986).
 10. "The ROCS and DIT Computer Codes for Nuclear Design," CENPSD-266-P-A, *Combustion Engineering Inc* (1983).

[1] DCRM

0.3071	0.4128	0.3924	0.3471	0.7442	1.6170	1.5343	0.7158
0.3068	0.4125	0.3919	0.3464	0.7442	1.6173	1.5349	0.7160
0.000	0.000	0.001	0.001	0.000	0.000	0.001	0.000
0.4128	0.4489	0.2278	0.3633	0.8025	1.1949	1.9468	1.0137
0.4125	0.4484	0.2274	0.3625	0.8020	1.1951	1.9475	1.0141
0.000	0.000	0.000	0.001	0.001	0.000	0.001	0.000
0.3924	0.2280	0.4218	0.4130	1.1410	1.7653	1.8186	0.5597
0.3919	0.2276	0.4211	0.4122	1.1406	1.7656	1.8192	0.5599
0.001	0.000	0.001	0.001	0.000	0.000	0.001	0.000
0.3471	0.3625	0.4117	0.4100	0.9318	1.5873	1.6467	
0.3464	0.3618	0.4109	0.4092	0.9313	1.5876	1.6472	
0.001	0.001	0.001	0.001	0.001	0.000	0.001	
0.7442	0.8001	1.1368	0.9299	1.5618	1.5365	0.5800	
0.7442	0.7998	1.1365	0.9294	1.5617	1.5368	0.5802	
0.000	0.000	0.000	0.000	0.000	0.000	0.000	
1.6170	1.1939	1.7609	1.5701	1.5298	0.5801		
1.6173	1.1943	1.7614	1.5705	1.5301	0.5802		
0.000	0.000	0.001	0.000	0.000	0.000		
1.5343	1.9413	1.8119	1.6367	0.5762			RAST-K
1.5349	1.9420	1.8127	1.6372	0.5765			ROCS
0.001	0.001	0.001	0.001	0.000			DIFF
0.7158	1.0109	0.5576					
0.7160	1.0114	0.5579				MAX	0.001
0.000	0.001	0.000				AVG	0.000

[2] 3 5 SHUTDOWN BANK A

[2] DCRM/RSM

CACE	CEA	RSM	RSM		DCRM	DCDM	
CASE	Туре			(%,x)		DCRIVI	(%)
	CA	285	291	2.1	278.7	271.9	-2.4
	СВ	1,359	1,339	-1.5	1,357.10	1,408.70	3.8
1	CC	694	669	-3.6	683.8	685.9	-0.3
	CD	360	365	1.4	353.9	339.9	-3.9
		2,698.00	2,664.00	1.3	2,673.50	2,706.4	1.2
	CA	544	514.5	-5.4	531.7	533.4	0.3
	СВ	711	680.9	-4.2	697.3	711.7	2.1
2	CC	1,536	1,482.00	-3.5	1,498.50	1,484.7	-0.9
	CD	824	775.7	-5.9	814.3	767.5	-5.7
		3,615	3,453.10	-4.5	3,541.80	3,497.3	1.3
	CA	204	218	6.9	186.4	182.8	-1.9
	СВ	811	789	-2.7	790.2	847.1	7.2
2	CC	871	921	5.7	878.7	861.1	-2.0
3	CD	1,133	1,120	-1.1	1,136.5	1,237.8	9.0
	SA	1,196	1,176	-1.7	1,173.0	1,137.3	-3.0
		4,215	4,224	0.2	4,164.8	4,266.1	2.1
	СВ	653	690.2	5.7	638.9	649.7	1.7
	CC	1,028	1,058.9	3.0	1,024.0	1021.2	-0.2
4	CD	798	807.7	1.2	795.3	819.3	3.0
4	SA	768	786.1	2.4	756.6	732.3	-3.2
	SB	764	785.2	2.8	754.2	739.8	-1.9
		5,118	5,244.0	4.5	5,070	5,177.9	2.9
	R5	907.9	000.0	2.4	308.8	325.3	5.4
	R4	007.0	029.3	2.0	440.5	451.4	2.5
5	R3	283.2	305.2	7.2	341.5	354.3	3.8
	SB7	840	840	0.0	837.3	879.0	5.0
		1931.0	1,974.5	2.2	1,928.1	2,010	4.2
	R1	600.1	632.2	5.4	604.1	627.9	3.9
	R2	528.1	462.9	-12.3	485.5	477.4	-1.7
6	R3	382.7	333.8	-12.8	340.5	321.1	-5.7
0	R4	426.3	389.6	-8.6	454.4	425.4	-6.4
	SA5	840	788.3	-4.7	819.9	788.6	-3.8
		2777.2	2,606.8	-6.1	2,704.4	2,640.4	-3.1
	(%)			4.2			3.1
	(%)			3.0			2.0
	(%)			-12.8			9.0
	(%)			0.0			0.2

[3] DCRM 가 : CASE 3 CC