

polyborate

Abstract

It was measured that the neutron radiation effect on the generated Li from ${}^{10}B(n \cdot)^{7}Li$ reaction, the loss of boron content and pH change in boric acid solution. With compensation for interference of excess boron 50 2,000 μ g/ml, lithium 0.2 1.0 μ g/ml range was determined within RSD 6.4%. The amount of lithium generated from ${}^{10}B(n \cdot$

)⁷Li reaction was proportionate to the concentration of boron and the time of irradiation, under our experimental condition. The pH value of irradiated boric acid was shifted to considerably low. It is estimated that boric acid would be transformed into the polyborate form, by radiolysis products of water, which has high dissociation constant.

2003

가

	H3E	3O₃, LiOI	H, H ₂ pl	H				가	
(Hydrogen Inje	ection (Chemistry	y)						(Stress
Corrosion Crac	king)		1 - 3)						
Co-60, Co-5	58						Zn		
	4 - 6)	. FAC(F	low Accele	rated Co	rrosion)			ETA	Ethanol
Amine) 가		7)			,			,	(Water
Chemistry)									
<i>,</i>				가	フ	ŀ			
pН									
L	가					가		,	
					가	,			
									가
		8-9)	가						
pH	[
		기	ר . ¹⁰⁾ ר						
¹⁰ I	В		7	'ŀ	$^{10}\mathbf{B}$		pН		
LiOH 가	pН	6.9 7.4	4		pН		S. Anth	oni가	가
	pН				loop				
, 300		pН	7.0 7.2					:	가
рН							11) •	pŀ	ł
Li	iОН	가 p	H가	Zr					
$^{10}B(n \cdot)^{7}Li$			1.73%	¹⁰ Bフト	⁷ Li			pН	
						I	LiOH		

(radioly sis)

1.

7ł .¹²⁾ $^{10}\mathbf{B}$ 가 Li Li . Li pН (glove $pH \qquad \qquad . \ ^{^{10}}B\,(\,n\,\,\cdot\,\,\,\,)^7Li$ ⁷Li box) . Li . 가 가 가 . 2.

2.1.

Li Zeeman 7 (Perin elmer Model 5100,U.S.A) 7 Table 1

I able 1.			В	Aldrich	A.C.S	В
99.5% .	LiOH	spec	ICP - A	ES		

2.2.

.

Fig. 1. 가 . 가 가 0.8 cm 가 . 10 cm가 가 • 10.0 cm 2.0 cm 3 mm . 가

7 · 20% . 1×10^{-4} torr

2.3.

Pool . HT S (Hydralutic Tube System: HTS) $6.5 \times 10^{13} \text{ n/cm}^{2} \text{ sec}$, 0.5 1 48 . 3. 3.1. 가 7.3 × 10⁻¹⁰ **7**: Mannitol($K_a = 1.5 \times 10^{-4}$) **7**: 1 . 0.1 N NaOH . 5 894.2(RSD 0.3%) μg/ml . (ICP-AES) 893.3 (RSD 0.23%) μg/ml 가 Table 2 . 3.2. Li . 50 2,000 μg/ml 0.1 1.0 µg/ml Li 가 Flameless-AAS . Li Fig. 2 0.1 µg/ml 가 가 Li 가 Li 0.1 10% , Li . 0.1 **μg**/m1 6.4% 가 . 3.3. Li Li Table 3 $.^{10}B(n \cdot)$ (3847 barn(at 0.0253 eV),) $6.5 \times 10^{13} \text{ n/cm}^2 \cdot \text{sec.}$ 203.0 $\mu \text{g/Me}$ 10 B 1.0 Li 0.23 $\mu g/M \ell$ ()) 0.18 μg/Mθ 78.3% . 381.4 μ g/M ℓ ¹⁰B (0.5 Li 0.16 μg/Me 71.6% 1.0 . ,

0.44 µg/Ml	Li	0.31 µg/Ml	70.5% .
		Li	
, ¹⁰ B	(3847 barn, a	t 0.0253 eV)	Li 73.5%
	Li	26	5.5%
가			
3.4.			
	$^{10}B(n \cdot)^{7}Li$		Li
Table 4	23:	3 932 μg/Ml 30	120
		233 932	μg/M2 30
5.5 14.1%	. 60		8.4 14.2%
120			
가			
(2) (932 µg	g/MQ)	

3.5. pН Li pH pН CO_2 . 233 932 μg/ml¹⁰B pH 25 Fig. 3 . Fig. 3 가 4 4 pH $\rm CO_2$ рН (6.6 × 10^{13} n · . 233, 466, 699, 932 μg/ml $\mathrm{cm}^{-2} \cdot \mathrm{sec}^{-1}$) 30 pН Table 5 pH가 . Table 5 Li () 가 pН . pH가 (H_2, O_2, H_2O_2) (H, OH, HO₂,) polyborate

.

가

4.

References

- R. L. Cowan, Independent Consultant, Livemore CA and C. J. Wood, EPRI, Palo Alto CA, "Control of Radiation Fields in BWRs After Noble Metal Chemical Addition", Chimie 2002, Avignon France, 22-26(2002).
- 2. R. S. Lillard, D. L. Pile, D. P. Butt, "The corrosion of materials in water irradiated by 800 MeV protons", Journal of Nuclear Materials, 278, 277-289(2000).
- 3. Chien C. Lin, F. R. Smith, R. L. Cowan, "Effects of hydrogen water chemistry on radiation field buildup in BWRs", Nuclear Engineering and Design, 166, 31-36(1996).
- 4. M. Domae, N. Chitose, Z. Zuo, Y. Katsumura, "Pulse radiolysis study on redox rxn of Zinc(II)", Radiation Physics and Chemistry, 56, 315-322(1999).
- W. S. Walters, J. D. Page, A. P. Gaffka, A. F. Kingsbury, J. Foster, A. Anderson,
 D. Wicken, J. Henshaw, "The effect of zinc addition on PWR corrosion product

deposition on Zircaloy-4", Chimie 2002, Avignon France, 22-26(2002).

- B. Stellwag, Framatome Anp Gmbh, M. Juergensen, Kernkraftwerk Biblis, "Zinc Injetion in German PWR Plants", Chimie 2002, Avignon France, 22-26(2002).
- 7. Francis Nordmann, Jean-Marie Fiquet, "Selection criteria for the best secondary water chemistry", Nuclear Engineering and Design, 160, 193-201(1996).
- P. A. Dokhale, V. N. Bhoraskar, P. R. Vijayaraghavan, "A Study on boron diffusion in high density polyethylene using the (n.) reaction", *Materials Science and Engineering* B 57, 1-8(1998).
- X. Deschanels, D. Simeone, J. P. Bonal, "Determination of the lithium diffusion coefficient in irradiated boron carbide pellets", *Journal of Nuclear Materials*, 265, 321-324(1999).
- B. Pastina, J. Isabey, B. Hickel., "The influence of water chemistry on the radiolysis of the primary coolant water in PWR", *Journal of Nuclear Materials*, 264, 09-318(1999).
- S. Anthoni, CEA-CEN Cadarache, France, "effects of pH of primary coolant on PWR contamination", Water Chemistry of Nuclear reactor systems 6. BNES, London,
- 12. J. A. Sawicki,"Nuclear Chemistry Model of Borated Fuel Crud", Chimie 2002, Avignon France,11-13 April,(2002).

Graphite Furnace/Temperature program							
Step	Temp.	Ramp	Hold	Gas flow	Gas type		
1	110	1	20	250	Norm		
2	130	5	30	250	Norm		
3	900	10	20	250	Norm		
4	2200	0	5	0	Norm		
5	2400	1	2	250	Norm		
Injection Temp.; 20, Pipette Speed: 100%,							
Extraction System: n							
Wavelength : 670.8 nm, Slit : 0.2 low,							
Signal Type: Zeeman AA							

Table 1. Instrumental parameters for Lithium analysis

Table 2. The measurement of boron by titration and ICP-AES

ICP-AES						
No.	Titration (µg/ml)	ICP-AES (µg/ml)				
1	891.2	890.8				
2	897.8	896.0				
3	893.0	892.5				
4	895.2	894.3				
5	893.7	892.8				
Ave.	894.2(RSD 0.30%)	893.3(RSD 0.23%)				

		Irradiation Calculated		Measured	Ratio
^{···} Β (μg/ Mℓ)*		time(hr)	Li(µg/M@)	Li(µg/Mℓ)	(%)
А	203.0	1.0	0.23	0.18	78.3
В	381.4	0.5	0.22	0.16	71.6
_	381.4	1.0	0.44	0.31	70.5

Table 3. Determination of generated Lithium after neutron irradiation of ^{10}B * ^{10}B (99.5 atomic percent , $H_3{}^{10}BO_3)$

Table 4.	Determination	of	diminution	Boric	acid	after	neutron	
	irradiation of	¹⁰ B						

Innodiction	Concentration	nest impediation	diminution
Irradiation	Concentration	post irradiation	aiminution
time(min)	$^{10}\mathrm{B}(\mu\mathrm{g}/\mathrm{M}\ell)$	$^{10}\mathrm{B}(\mu\mathrm{g}/\mathrm{M}\ell)$	(%)
	233	220	5.6
20	466	400	14.1
30	699	-	-
	932	820	12.0
	233	200	14.1
60	466	-	-
60	699	640	8.4
	932	850	8.7
120	233	200	14.1
	466	-	-
	699	-	-
	932	840	9.8

dash is damaged in a process to test, and there not being data

100 ((110)	Measured pH, at 25 , CO_2 free				
B (μg/ μν)	Before irradiation	After irradiation			
233	5.70	5.25			
466	5.38	4.95			
699	5.27	4.69			
932	5.14	3.72			

Table 5. pH change of boric acid before and after neutron irradiation

Caption

Fig. 1. Quartz ampoules and aluminum containner for neutron irradiation of liquid samples.

Fig. 2. Determination of Li content in the boric acid : ; 50, ; 100, ; 500, ; 800, ;1,000, ; 1,500, ; 2,000 μ g/ml respectively.

Fig. 3. pH measurement of boric acid solution of various concentration at 25 : ; 250, ; 500, ; 750, ; 1,000 μ g/ml respectively.

Corresponding author Phone : +82+(0)42-868-2471 Fax : +82+(0)42-868-8148 E-mail : nkcchoi@kaeri.re.kr

