Membrane DistillationPTFE $H_2^{18}O$

Separation of H¹⁸O using Membrane Distillation of PTFE Hydrophobic Membrane

PTF	E(Polytetrafluoroethy	Hene) $H_2^{18}C$)	Air Gap
Membrane Distillation(AGMD)	Vacuum Enhanced	Membrane Distillat	tion(VEMD)	
		(1	permeation flux)	${\rm H_2}^{18}{\rm O}$
AGMD VEMD			50°C	
heat exchange funnel		$0.5 \sim 4.0 \text{ L/hr/m}^2$	1.2 ~ 9.3 L/hr/m ²	
AGMD VEMD	¹⁸ O			
peak-to-peak	1.0074 ~ 1.013	1.01 ~ 1.014		VEMD
	(production	rate)	AGMD	

Abstract

In this research, the permeation and separation characteristics of the $H_2^{18}O$ isotopic water with the hydrophobic PTFE membrane using Air Gap Membrane Distillation(AGMD) and Vacuum Enhanced Membrane Distillation(VEMD) were investigated. Permetation fluxes were measured by weighing the membrane-permeated water and the isotopic concentrations of $H_2^{18}O$ in the permeated water were analyzed by Diode Laser Absorption Spectroscopy. Permeation fluxes of 50°C water for the hydrophobic PTFE membranes were $1.5 \sim 4.0$ L/hr/m² for AGMD and $1.2 \sim 9.3$ L/hr/m² for VEMD under the various heat exchange funnel temperatures in the permeation cell. Also, isotope separation coefficients for the hydrophobic PTFE membranes were $1.007 \sim 1.013$ for AGMD and $1.01 \sim 1.014$ for VEMD under the certain conditions. Based on these results, VEMD is assumed to be more efficient for increasing the degree of oxygen isotope separation and the production rate than AGMD.

		,	,			
가		·				
					가	
						¹⁸ O
(NO)						
	0.2%		¹⁸ O	95%		フト
	(PET: Positron	Emission '	Tomograp	hy)		
¹⁸ F-FDG	1	¹⁸ F				
		¹⁸ O				
	(Membrane)				H_2^{-18}	C
		Mei	nbrane Di	stillati	on	90
A. G. Chmie	elewski	W. Alexan	der van H	ook[1·	-4]	
				가		
가 .					가	(¹⁶ O)
가		가				
가 가	. A. G. Chm	nielewski <i>et</i> .	al. Per	rvapor	ration, DCMD(Direct C	Contact Membrane
Distillation) AGMD	(Air Gap Membra	ane Distillat	ion)			
		α	= 1.003		$\alpha = 1.01 \sim 1.03$	
	temperature	polarization	가			
	가 (15°C ~ 20°	C)			Kim <i>et. al.</i> [5]	가
A. G. Chmielewski	et. al.			가		
						71
					AGMD VEMD	
•						
2						
2.						
21						
Figure 1		AGMD	VEMD			
AGMD	71	71				
		4				

1.

PTFE (Millipore FGLP)

0.2 $\mu m,$ 150 $\mu m,$ porosity 70% Figure 2 SEM (Scanning Electron Microscope) .

Figure 2. SEM(Scanning Electron Microscope) photograph of hydrophobic PTFE membrane with 0.2 μm pores on average

	(Kim et. al.[5])	(permeation cell),	()
,			de	ionizer	
. 47 mi	m (12.56 cm ²),		
		(5	mm x 5 mm mesh)	,	
0					
			heat exchange	funnel	
			hea	t bath	가
	(peristaltic)				
heat exchange funnel				chiller	heat
exchange funnel			50°	С	
AGMD	, VEMD		. VE	MD AGMD	
		heat exchange	e funnel	15°C, 20°C, 25°C,	45°C(
chiller)			
				0.1°C	
		retentate()		permeate
() $H_2^{18}O/H_2$	2 ¹⁶ O			([5, 7])
				. , v ₁	ı(symmetric

vibrational stretching mode), v₂(anti-symmetric vibrational stretching mode), v₃(vibrational vending mode) 3 $1.39 \ \mu m \ (\sim 7190 \ cm^{-1})$ $v_1 + v_3$. H₂¹⁸O $H_2^{16}O$ _ (rovibrational) peak [8]. H₂¹⁷O/H₂¹⁶O 7183.6856 cm⁻¹ 가 7183.5864 cm⁻¹ peak 가 . (Sacher, Model TEC 500-1380) ~ 3 mW Littman 가 36 m 가 (Newfocus, Model 5611) S/N lock-in-amplifier(Stanford Research Systems, . 1st harmonic Model SR850) peak-to-peak ratio 7 torr . 40 . Agilent Vee Beer-Lambert • . ¹⁸O (3) term ^{18}O x H₂¹⁸O ($H_2^{17}O$) $H_2^{16}O$ line intensity $I(v) = I_o exp[-S(T)g(v - v_o)nl]$ $I_o = I(v)$ S(T) line strength, $g(v - v_o)$ v가 line-shape function, *n* number density *l* optical path length 가 $H_2^{18}O$ ($H_2^{17}O$) $H_2^{16}O$ S(T) = g(v - v)line intensity ratio $a = ln[I(v)/I_o]$ (3) term i ¹⁸O(¹⁷O)

$$\alpha = \frac{\left(\frac{x}{1-x}\right)_{retentate}}{\left(\frac{x}{1-x}\right)_{permeate}} \approx \frac{\left(\frac{a_i}{a_{16}}\right)_{retentate}}{\left(\frac{a_i}{a_{16}}\right)_{permeate}}$$
(3)

3.

50° C, heat exchange funnel 45° C (chiller	
50 mL/min, 100 mL/mlm, 130 mL/min, 160	0 mL/min
. Chmielewski et. al.[4] R. W. S	Schofield et.
. Figure 3(b) AGMD	VEMD
L/min) 가 가	
가	
. Chmielewski <i>et. al.</i> [4] R. W. S . Figure 3(b) AGMD L/min) フト フト フト フト	Schof VEN

 $\Delta P = P_1 - P_0$

(a)

(c)

Fig. 3. Water vapor permeation properties of hydrophobic PTFE membrane. (a) Water flow rate dependent permeation flux for AGMD at water temperature = 50° C and heat exchange funnel temperature = 45° C (b) Water temperature dependent permeation flux for AGMD and VEMD at water flow rate = 160 mL/min and heat exchange funnel temperature = 45° C (c) Heat exchange funnel temperature dependent permeation flux for AGMD at water temperature = 50° C)

Figure 4

	, lock-in-amplifier		S/N	
1 st harmonic	(free spectral range)7	+ 750 MHz	(confocal	
Fabry-Perot cavity)		S/N 가		
1 st harmonic peak-to-peak	(4)			
$\delta^{18} O($ ‰ $)$.	‰	1/1000		
$\alpha = 1 - \delta^{18}O(\text{‰})/1000$				

Fig. 4. Absorption spectrum of $H_2^{16}O$, $H_2^{17}O$, and $H_2^{18}O$.

 $\delta^{18}O(\textbf{\%})$ Figure 5(a) AGMD 가 50°C heat exchange funnel $\Delta T = 5^{\circ}C, 25^{\circ}C, 30^{\circ}C,$ 45°C, 25°C, 20°C, 15°C 35°C ^{18}O inlet outlet $\delta^{18}O(\infty) = -7.35\%, \ \delta^{18}O(\infty) = -10.67\%, \ \delta^{18}O(\infty) = -12.46\%,$ $\delta^{18}O(\%) = -13.33$ ^{18}O $\alpha = 1.0074, 1.0107, 1.0125$ ‰ 1.0133 deaeration 50°C 가 VEMD heat eachange funnel ¹⁸O $\Delta T = 5^{\circ}C, 30^{\circ}C$. Figure 5(b) 45°C, 20°C ¹⁸O $\delta^{18}O(\infty) = -10.18\%, \ \delta^{18}O(\infty) = -14.42\%$ [10] $\alpha = 1.0102, 1.0144$ Table 2 VPIE(Vapor Pressure Isotope Effects), AGMD, VEMD . AGMD VPIE $\Delta T = 5^{\circ}C$ VEMD VPIE 2 Membrane Distillation 가 $AGMD(\Delta T =$ $5^{\circ}C)$ 30% Chmielewski et. al.[4] TPC(Temperature Polarization coefficient) = $(T_{so} - T_{sL})/(T_o - T_L)$? 0.2 Chmielewski et. al. $0.1 \sim 0.2$ 가 TPC interfacial temperatures, To T_{so} T_{sL} T_{L} 가 AGMD VEMD 가 -4 -6 Mean = -7.35

(a) AGMD

Figure 5. Degree of oxygen isotope separation for hydrophobic PTFE membrane. (a) AGMD at water temperature = 50°C under various heat exchange funnel temperatures = 45°C, 25°C, 20°C, and 15°C (b) VEMD at water temperature = 50°C under various heat exchange funnel temperatures = 45°C and 20°C

Table 2. Comparison of O¹⁸ oxygen isotope separation coefficients for AGMD, VEMD, and Distillation(VPIE).

ΔT (°C) at T _o = 50°C	AGMD (a)	VEMD (a)	Distillation (α) at 50 °C
5	1.0074	1.0102	1.0071
25	1.0107	-	1.0071
30	1.0125	1.0144	1.0071
35	1.0133	-	1.0071

4.

	AGMD	VEMD	PTFE			
	()	가 가		가 기	F	가
가			$AGMD(\Delta T = 5^{\circ}C)$			
Chmielewski	et. al.[4]					
		. VEMD	deareation		7	ł pressure
gradient	가		가			
가						
			membrane mass and heat transfer	가		

- 1. W. Alexander van Hook, A. G. Chmielewski, G. Z-. Trznadel, and N. Miljevic, "Method of enrichment of oxygen-18 in natural water", US Patent 5,057,225, Oct. 15 (1991).
- 2. A. G. Chmielewski, G. Z-. Trznadel, N. Miljevic, and W. A. van Hook, "¹⁶O/¹⁸O and H/D separation of liquid/vapor permeation of water through an hydrophobic membrane", *J. Membr. Sci.*, **60**, 319-329 (1991).
- 3. A. G. Chmielewski, G. Z-. Trznadel, N. Miljevic, and W. A. van Hook, "Membrane distillation employed for separation of water isotopic compounds", *Sep. Sci. Technol.*, **30**(7-9), 1653-1667 (1995).
- 4. A. G. Chmielewski, G. Z-. Trznadel, N. Miljevic, and W. A. van Hook, "Multistage process of deuterium and heavy oxygen enrichment by membrane distillation", *Sep. Sci. Technol.*, **32**(1-4), 527-539 (1997).
- 5. , , , , , ,"
 - , May (2003).
- 6. R. W. Schofield, A. G. Fane, and C. J. D. Fell, "Heat and mass transfer in membrane distillation", *J. Membr. Sci.*, **33**, 299-313 (1987).

, pp 202, Feb. (2003).

",

- Robert A. Toth, "Extensive measurements of H₂¹⁶O line frequencies and strengths: 5750 to 7965 cm⁻¹", *App. Opt.*, **33**(21), 4851-4867 (1994).
- 9. R. W. Schofield, A. G. Fane, and C. J. D. Fell, "Gas and vapour transportation through microporous membranes. II. Membrane ditaillation", *J. Membr. Sci.*, **53**, 173-185 (1990).
- I. Kirshenbaum, "Physical Properties and Analysis of Heavy Water", McGraw-Hill Book Company, New York (1951).