TLD-700

BNCT

Measurements of Gamma-ray Dose at the HANARO BNCT Facility Using TLD-700 Dosimeter

.

Abstract

The gamma-ray dose is measured at the HANARO BNCT irradiation facility using the TLD-700 dosimeter. The gamma-ray dose is determined by eliminating the neutron dose from the TLD dose measurements in the mixed field of neutron and gamma-ray. The free gamma-ray dose and in-phantom dose distribution are measured at the exit of the beam collimator with variation of LN_2 cooling condition of radiation filter. Measured in-phantom gamma-ray dose has the maximum value at the depth of 2 mm in phantom, and then decreases rapidly, and the maximum dose rate is 14.2 Gy/hr. The measured value at the depth of 22 mm in phantom is about a half of the maximum value. When the radiation filter is cooled by LN_2 , the gamma-ray dose is about 60% larger than that without cooling. The major contribution of gamma-ray dose is the secondary gamma-ray generated in the phantom by the incident neutrons.

1.

(BNCT: Boron Neutron Capture Therapy)

2. TLD-700

BN CT				(TLD,
Themoluminescent	Dosimeter)		BNCT	

(mixed field) . 가 TLD TLD . TLD-700(Harshaw) . TLD-700 TLD rod Li-7 , Li-6 0.01% TLD . Li-6 $\text{Li}^6(\mathbf{n}, \cdot)\text{H}^3$, H-3 , (LET, Linear Energy Transfer) . Li-6 가 940 barn (Li-7 1.1 2200 m/ sec Li-6가 barn) TLD-700 . . [3]. $R'_{n} = kD_n + hD$ (1) R_{n} , R'_{n} • D_n DCo-60 . *k* 가 , h . 가 k 가 TLD-700 , 1 [4 16]. R 가 [17]. 가 R rad 0.5 2.5 rad/ 10^{10} n/ cm² TLD-700 , Li-6 [18]. , BNCT TLD-700 가 , Raaijmakers k 1.43 .

TLD	-700

•

Literature	Thermal neutron response in ra per 10 ¹⁰ n per cm ²	
Simpson 1967	0.7	
Reddy 1969	0.87 0.96	
Scarpa 1970	1.0	
Dua 1971	2.5	
MAjborn 1972	1.3	
Ayyangar 1974	0.96	
Ayyangar 1974	1.1	
Horowitz 1977	0.19	
Horowitz 1978	1.6	
Henaish 1980	1.34	
Raaijmakers 1996	1.43	
Liu 2002	1.09	

3.

TLD-700 2 .

.

2. TLD-700

Param eters	Figures
Туре	TLD-700
Materials	Lithium Fluoride (Li-7 isotope)
	LiF:Mg,Ti
applications	Gamma, Beta
Zeff	8.2
TL emission spectra	3500-6000 Angstrom
Sensitivity at Co-60	1.0
relative to LiF	
Energy Response 30 keV/Co-60	1.25
Useful Range	10 µGy - 10 Gy
Fading	5%/yr at 20
Diameter	1 mm
Length	6 mm

1.

3.

Condition		Irradiation time [sec]	Neutron flux $[n/cm^2 \cdot sec]$	Neutron fluence $[n/cm^2]$
without LN ₂ cooling	with phantom	1760	8.14×10^8	1.43×10^{12}
with LN ₂	without phantom	3130	1.15 × 10°	2.52×10^{12}
cooling	with phantom	2168		•

•

4 7

•

.

Li-6가 95%

•

•

4. 가

•

	TLD					
	reader					
		$[n/cm^2 \cdot sec]$				[cGy/ hr]
[mm]	[cGy]		[cGy]		[cGy]	
0	862.49	1.7444×10^{9}	418.47	1.1107	376.75	761.97
2	1029.21	2.0877×10^{9}	497.80	1.1365	438.02	885.89
4.5	917.71	1.9813×10^{9}	413.38	1.1091	372.73	753.83
11	803.51	1.5021×10^{9}	421.16	1.1116	378.88	766.26
14.5	668.86	1.3192×10^{9}	333.08	1.0830	307.54	621.00
26	492.20	8.5224×10^8	275.27	1.0643	258.64	523.10
47.5	222.10	3.8523×10^8	124.04	1.0000	124.04	250.88
99	60.71	5.4892×10^{7}	46.74	1.0000	46.74	94.53
150.5	21.16	9.3631 × 10 ⁶	18.78	1.0000	18.78	37.98
202	11.15	9.0528×10^{5}	10.92	1.0000	10.92	22.08

5.		
э.		

가

	TLD					
	Teauer					
		$[n/cm^2 \cdot sec]$				[cGy/ hr]
[mm]	[cGy]		[cGy]		[cGy]	
2	1994.4	2.7154×10^{9}	1152.55	1.3488	854.48	1418.87
4.5	1886.3	2.6271×10^{9}	1071.85	1.3227	810.37	1345.64
11	1399.4	2.0454×10^{9}	765.28	1.2232	625.62	1038.86
14.5	1253.1	1.7907×10^{9}	697.94	1.2014	580.95	964.68
26	764.4	$1.1452 \times 10^{\circ}$	409.35	1.1078	369.52	613.60
47.5	421.6	5.0425×10^8	265.27	1.0610	250.01	415.15
99	103.6	8.1556×10^7	78.32	1.0004	78.28	129.99
150.5	38.9	1.3257×10^{7}	34.79	1.0000	34.79	57.77
202	18.4	1.5951×10^{7}	13.45	1.0000	13.45	22.34

•

•

6. 가

TLD [m	m]	TLD reader				
Collimator		[cGy]	$[n/cm^2 \cdot sec]$	[cGy]	[cGy/ hr]	
0	0	669.8	1.1452×10^{9}	157.21	180.81	
0	75 upper	34.8	1.9643×10^{7}	26.01	29.91	
0	100 upper	5.3	1.7519×10^{6}	4.52	5.19	

,

TLD [m	m]	TLD reader			
Collim ator		[cGy]	$[n/cm^2 \cdot sec]$	[cGy]	[cGy/hr]
26	0	764.4	1.1452×10^{9}	409.35	613.60
26	20 upper	720.7	1.1067×10^{9}	377.58	571.30
26	40 upper	639.2	1.0307×10^{9}	319.67	492.10
26	20 lower	761.4	1.1067×10^{9}	418.28	625.36
26	40 lower	730.7	1.0307×10^{9}	411.17	616.00
26	20 right	789.4	1.1067×10^{9}	446.28	661.81
26	40 right	627.3	1.0307×10^{9}	307.77	475.48
26	20 left	718.2	1.1067×10^{9}	375.08	567.94
26	40 left	663	$1.0307 \times 10^{\circ}$	343.47	524.98

2. BN CT

4.

			TLD-700	BN CT
		TLD		
2 mm				
	r.	14.2 Gy/hr	,	

1. D.N. Slatkin, "A History of Boron Neutron Capture Therapy of Brain

Tumors", Brain, **114**, 1991, p.1609.

BNCT

- 2. , , , , " BNCT ", 2003 , , , , 2003. 5.
- 3. F.H. Attix, "Introduction to Radiological Physics and Radiation Dosimetry", John Wiley & Sons, 1986, p.476.
- 4. K. Yamamoto, H. Kumada, Y. Torii, T. Kishi, T. Yamamoto and A. Matsumura, "Simple Estimation Method of Gamma-ray Dose Using Low Neutron-Sensitive TLD (UD-170LS) for Intra-Operative Boron Neutron Capture Therapy (IOBNCT)", W. Sauerwein et al. ed., Research and Development in Neutron Capture Therapy, Proceedings of the 10th International Congress on Neutron Capture Therapy, Essen, Germany, 2002, MONDUZZI EDITORE, 2002, p.499.
- 5. K. Ayyangar, A.R. Lakshmanan, B. Chandra and K. Ramadas, "A Comparison of Thermal Neutron and Gamma Ray Sensitivities of Common TLD Materials, Phys. Med. Biol., **19**, 1974, pp.665-676.
- Y.S. Horowitz, "The theoretical and microdosimetric basis of thermoluminescence and applications to dosimetry", Phys. Med. Biol., Vol.26. No.4, 1981, pp.765-824.
- 7. Y.S. Horowitz, "The Thermal Neutron Sensitivity of LiF (TLD-700;Harshaw):

the Effect of Sample Size and Batch Origin", Phy. Med. Biol., V23, 1978, p.340.

- B.A. HENAISH, A.M. SAYED and S.M. MORSY, "FAST AND THERMAL NEUTRON RESPONSE OF BeO AND Li₂B₄O₇:Mn IN COMPARISON WITH LiF AND CaF₂", Nucl. Instr. & Med., 178, 1980, pp.395-399.
- 9. C.P. Raaijmakers, et al., "The Neutron Sensitivity of Dosimeters Applied to Boron Neutron Capture Therapy", Med. Phys., 23 (9), 1996, pp.1581-1589.
- S.W. Martsolf, et al., "Practical Considerations for TLD-400/700-Based Gamma Ray Dosimetry for BNCT Applications in a High Thermal Neutron Fluence", Health Physics, 1995, pp.966-970.
- Y.S. Horowitz, I. Fraier, and J. Kalef-Ezra, "TL light Self-absorbtion Implications for Studies on the Relative TL Efficiency as a Function of Linear Energy Transfer, Phys. Med. Biol., 24, 1979, pp.832-834.
- J.A. Douglas, "Applications of TL Materials in Neutron Dosimetry", Oberhofer and Scharmann ed., Applied Thermoluminescent Dosimetry, Bristol: Adam Hilger, 1981, pp.229-258.
- 13. A.R. Reddy, K. Ayyangar and G.L. Brownell, "Thermoluminescence Response of LiF to Reactor Neutrons", Radiat. Res., 40, 1969, pp. 552-562.
- 14. B. Majborn, P. Botter-Jenson and P. Christensen, "Thermoluminescence Dosimetry Applied to Areas with Mixed Neutron and Gamma Radiation Fields", Dosimetry in Agriculture, Industry, Biology and Medicine, STI/ PUB/ 311, Vienna:IAEA, 1972, pp.169-177.
- R.E. Simpson, "Response of Lithium Fluoride to Reactor Neutrons", Proc. 1st Int. Conf. on Luminescence Dosimetry, Stanford, USAEC-CONF-650637, 1967, pp.457-466.
- 16. H.M. Liu and P.C. Hsu, "Limitation of TLD-700 Used for Gamma Dose Measurement in Mixed (n,) Fields", W. Sauerwein et al. ed., Research and Development in Neutron Capture Therapy, Proceedings of the 10th International Congress on Neutron Capture Therapy, Essen, Germany, 2002, MONDUZZI EDITORE, 2002, p.449.
- 17. H. Cember, "Introduction to Health Physics", Pergamon Press, New York, 1983, p.142.
- 18. K.R. Herminghuysen, T.E. Blue, "Development and evaluation of a neutron-gamma mixed-field dosimetry system based on a single

thermoluminescence dosimeter", Nucl. Instr. & Med. A353, 1994, pp.420-424.

- G. GAMBARINI and M. SINHA ROY, "Dependence of TLD Thermoluminescence Yield on Absorbed Dose in a Thermal Neutron Field", Appl. Radiat. Isot., Vol. 48, No.10-12, 1997, pp.1467-1475.
- 20. G. Gambarini, M. Sinha Roy, A. Scacco and A.E. Sichirollo, "Thermoluminescent dosimeters in high fluxes of thermal neutrons", B. Larsson et al. ed., Advances in Neutron Capture Therapy Volume I, Medicine and Physics, ELSEVIER, 1997, p.212.
- B. Mukherjee, "Glow curve analysis of TLD-700 dosimeters exposed to fast neutrons and gamma rays from isotopic sources", Nucl. Instr. & Med., A385, 1997, pp.179-182.