UO₂-2wt% Er₂O₃

Effect of Particulate Inclusions on the Densification of UO₂-2wt% Er₂O₃

Abstract

The effect of particulate inclusions on the densification of UO_2 -2wt%Er₂O₃ has been investigated. Particulate inclusions include pore former, scrap U_3O_8 powder, and heat-treated U_3O_8 seeds. Densification was retarded by the particulate inclusions, and the delays became larger in order of pore former, scrap U_3O_8 powder, and heat-treated U_3O_8 seed. The temperatures showing maximum densification rate also increased in the same order. The shrinkage difference between the UO_2 -10wt%Gd₂O₃ compact and the UO_2 -2wt%Er₂O₃ compact can be decreased in a quantity of maximum 3% by the various particulate inclusions. The heat-treated U_3O_8 seeds show the largest shrinkage delay effect among the various particulate inclusions.

가 가 가 . 가 .[1] 가 가 $UO_2-12wt\%Gd_2O_3$, $UO_2\!\!-\!\!2wt\%Er_2O_3$ 가 Gd₂O₃7 . 가가, 가 Er_2O_3 Gd_2O_3 가 . [1] 가 가 가 가 . , (duplex pellet) 가 가 $UO_{2}-$ • $2wt\%Er_2O_3$ UO_2 UO₂-12wt%Gd₂O₃ , 가 $UO_2 \quad Gd_2O_3$ 1200-1500 Gd_2O_3 Gd_2O_3 UO_2 .[2-4] 가 , , 가 $UO_2-Gd_2O_3$ Gd_2O_3 .[5] UO₂-2wt%Er₂O₃ (inert particulate • inclusion)가 가 가 .[6-9] $UO_2-2wt\%Er_2O_3$. , 가 U_3O_8 , U₃O₈

2.

ADU–UO ₂	Er_2O_3	2wt%	가	#100	3	sieve-mixing	
$UO_2-2wt\% Er_2O_3$							(AZB,

,

,

Azodicarbonamide), U_3O_8 , U_3O_8 0.5 wt% • U_3O_8 U_3O_8 6 wt% 가 3 sieve-mixing 가 UO_2 450 °C U_3O_8 4 . U₃O₈ 1300 °C, 4 . U₃O₈ press 1.5 ton/cm² #400 (seed A) (seed B) 2 Dilatometer 8 mm 2.85 g 5.49±0.08 10 mm .

3.

SEM Fig. 1 . (AZB, Azodicarboamide) Fig. 1(a) SEM 7 μm 7 . Fig. 1(b) UO_2 450 °C, 4 #100 가 U_3O_8 10 µm 가 U₃O₈ 1300 °C, 4 . U₃O₈ 가 가 7 μm 1.5 ton/cm^2 U_3O_8 press . U₃O₈ 가 U_3O_8 6.3 µm . 가 가 . #400 가 Seed A Fig. 1(c) SEM . Fig. 1(d) 가 Seed B • 가 UO₂-2wt% Er₂O₃ Fig. 2 가 가 가 UO_2 -2wt% Er_2O_3 AZB 가 0.5 wt% , UO₂-•

2wt% Er ₂ O ₃			. U ₃ O ₈		
6 wt% フト	1100 °C가	UO ₂ -2wt% Er ₂ O ₃			
	가	. U ₃ O ₈	6 wt% 기		
900 °C	UO ₂ -2wt% Er	₂ O ₃			
	가		가		
	(seed	A, seed B)	가		
seed B가 seed A		1350 °C			
		Fig. 3	. UO ₂ -2wt% Er_2O_3		
,	1210	°C			
가		가	,		
, U ₃ O ₈	, U ₃ O ₈	가 . Seed A	6 wt% 기		
	7	⊦ 1260 °C	가 .		
	seed A	71	가 seed B 가		
		seed A	가 가		
		,	가 seed B		
seed A가	site 7		가		
	seed B 가	가			
Fig. 4			Fig. 2		
	$\rho = \rho_0 / (1 - \Delta L / L_0)^3$.[6]			
가 ,	U	₃ O ₈ 가			
. U ₃	O ₈ 가		가		
. UO ₂ -2wt% Er ₂	O_3	,	U_3O_8		
가	$1.7\%, U_3O_8$	가	3.5 %		
가 . 가		1730	0 °C 100 °C		
		가			
	가				
Fig. 5 가			UO ₂ -		
$10wt\%Gd_2O_3$	(Fig. 2)	7	가		

가 . 10% 가 가 .[5] 가 UO_2 -10wt% Gd_2O_3 가 Fig. 1 U_3O_8 . 900 °C UO_2 -2wt% Er_2O_3 가 . U₃O₈ 3% 가 • 가 가 • 가 4.

UO₂-Gd₂O₃ UO₂-Er₂O₃ 7 (backstress) . 7

:

 $UO_2-2wt\% Er_2O_3$. UO_2-2wt\% Er_2O_3 , U_3O_8 , U_3O_

가

1.

, KAERI/RR-2023/99,

•

•

.

.

2000.

- R. Manzel and W. O. Dörr, "Manufacturing and Irradiation Experience with UO₂/Gd₂O₃ Fuel," *Am. Ceram. Soc. Bull.*, **59** 601-603 (1980).
- 3. S. M. Ho and K. C. Radford, "Structural Chemistry of Solid Solutions in the UO₂-Gd₂O₃ system," *Nucl. Tech.*, **73** 350-360 (1986).
- R. Yuda and K. Une, "Effect of Sintering Atmosphere on the Densification of UO₂-Gd₂O₃ compacts," *J. Nucl. Mater.*, **178** 195-203 (1991).
- 5. Y.-W. Rhee, K. S. Kim, K. W. Kang, J. H. Yang, J. H. Kim and K. W. Song, "Cracks in Sintered Duplex Burnable Absorber Pellet and Effect of Additives, Atmospheres and Heating Rate on the Densification of UO₂–Gd₂O₃," the Proceedings of the Korean Nuclear Society Autumn Meeting Yongpyong, Korea, 2002.
- F. F. Lange and M. Metcalf, "Processing-Related Fracture Origins: II, Agglomerate Motion and Cracklike Internal Surfaces Caused by Differential Sintering," *J. Am. Ceram. Soc.*, 66 398-406 (1983).
- M. W. Weiser and L. C. De Jonghe, "Inclusion Size and Sintering of Composite Powders," J. Am. Ceram. Soc., 71 C125-C127 (1988).
- O. Sudre and F. F. Lange, "Effect of Inclusions on Densification: I, Microstructural Development in an Al₂O₃ Matrix Containing a High Volume Fraction of ZrO₂ Inclusions," *J. Am. Ceram. Soc.*, **75** 519-524 (1992).
- 9. C.-L. Fan and M. N. Rahaman, "Factors Controlling the Sintering of Ceramic Particulate Copmposites: I, Conventional Processing," *J. Am. Ceram. Soc.*, **75** 2056-2065 (1992).

Fig. 1. SEM images of the particulate inclusions.

Fig. 2. Shrinkage curves for UO₂-10wt% Gd₂O₃ and UO₂-2wt% Er₂O₃ containing various particulate inclusions.

Fig. 3. Shrinkage rates for UO₂-2wt% Er₂O₃ containing various particulate inclusions.

Fig. 4. Relative density changes of the UO₂-2wt% Er₂O₃ containing various particulate inclusions.

Fig. 5. Shrinkage differences between UO₂-10wt% Gd₂O₃ and UO₂-2wt% Er₂O₃ containing various particulate inclusions