'2003

$$M_3O_8$$
 7 UO₂-Gd₂O₃

Characteristics of M_3O_8 -added UO_2 -Gd₂O₃ pellet

Abstract

The effect of M_3O_8 addition on the pellet properties such as density, grain size, microstructure and Gd homogeneity has been investigated in UO₂-6wt%Gd₂O₃ and UO₂-10wt%Gd₂O₃ pellets. The sintered density of as-received M_3O_8 -added pellet decreased linearly with the M_3O_8 content at the rate of 0.035%TD per 1wt% M_3O_8 . However, the sintered density of milled M_3O_8 -added pellet remained invariant with the M_3O_8 content. The grain size increased with M_3O_8 content and, thus grain size was about 13 μ m at 20wt% M_3O_8 .

$$7$$
 (Gd_2O_3)
 7
 UO_2
 $, UO_2-Gd_2O_3$
 7
 7
 $[1,2]$
 Gd_3O_3
 7
 $4 \sim 10wt\%$
 7
 $. UO_2-Gd_2O_3$
 UO_2
 UO_2
 $[3]$
 $UO_2-Gd_2O_3$
 $(U,Gd)_3O_8$ (M_3O_8)

)				M_3O_8	
	UO_2 - Gd_2O_3			M_3O_8	가
UO_2 - Gd_2O_3					
	M_3O_8	가	$UO_2 - Gd_2O_3$		
, $UO_2 - Gd_2O_3$		475 ⁰ C		M_3O_8	0~20wt%

 $\label{eq:main_state} \ref{eq:main_state} \mathcal{P} \qquad UO_2 \text{-} \mathsf{Gd}_2 O_3 \qquad \qquad , \qquad \mathsf{M}_3 O_8 \quad \mathcal{P} \qquad UO_2 \text{-} \mathsf{Gd}_2 O_3$

2.

2-1. M₃O₈ AUC-UO₂ 6, 10wt% Gd_2O_3 Scrap $UO_2 - Gd_2O_3$ 가 1 attrition mill 가 1 , 3 ton/cm² (AZB) 0.5 % 1730°C wet hydrogen . 475°C 4 $UO_2 - Gd_2O_3$ M_3O_8 X-ray 4 SEM . , laser light scattering . 2-2. Scrap UO_2 -Gd₂O₃ Scrap UO_2 -Gd₂O₃ 1 . AUC-UO₂ 6, 10wt% Gd₂O₃ 1 M₃O₈ 가 . , M₃O₈ 가 (case1) 가 (case2) attrition mill

, 1 ton/cm² (AZB) 0.5 % 가 1 , 1 ton/cm² (slug) . 3 ton/cm² . 1730°C wet hydrogen (dew point 24°C) 4 . Gd

.

EPMA

2(a), (b) $UO_2-6wt\% Gd_2O_3$ $UO_2-10wt\% Gd_2O_3$ 475°C 4 Х-. 6wt% 10wt% Gd₂O₃ 475°C . UO₂-Gd₂O₃ M_3O_8 Gd 가 [4,5]. Gd M_4O_8 [6]. . scrap M_3O_8 , 3(a), (b) UO₂-6wt% Gd₂O₃ UO₂-10wt% Gd₂O₃ 475°C M_3O_8 SEM • 6wt%Gd₂O₃ M_3O_8 10*µ*m , M₃O₈ 16μm Gd 10wt%Gd₂O₃ M_3O_8 . 가 4 M₃O₈ 가 (case1) 가 (case M₃O₈ 가 2) . M₃O₈ 6wt% 10wt% Gd₂O₃ 가 1wt% M₃O₈ 가 0.035% , M₃O₈ 가 6wt% 10wt% Gd₂O₃ M_3O_8 가 . UO₂ scrap U₃O₈ 가 가 1wt% U₃O₈ 0.09~0.15% . U₃O₈ 0.5 m²/g UO₂ U_3O_8 U_3O_8 , 가 500°C . 가 30% U_3O_8 가 . M_3O_8

M₃O₈ 가

.

가 M_3O_8 M_3O_8 가 M_3O_8 , 가 M_3O_8 . M₃O₈ M_3O_8 M_3O_8 가 가 M_3O_8 가 5(a), (b) M_3O_8 가 M_3O_8 20wt% 가 UO_2 -6wt% Gd_2O_3 , 6 가 10*µ*m 가 . M₃O₈ 20wt% 가 M_3O_8 가 $4 \mu m$ 7 $UO_2-6wt\% Gd_2O_3$ 10wt% Gd_2O_3 M_3O_8 7 , 8(a), (b) 9(a), (b) 가 가 가 가 . 6wt% . M₃O₈ M₃O₈ 가 9.4µm 10wt% 가 Gd_2O_3 11.2µm, 20wt% 가 13.4µm . 10wt% Gd₂O₃ M_3O_8 가 11.2µm 10wt% 가 12.4µm, 20wt%가 13.2µm . cluster 10 11 M₃O₈ 10wt% 가 UO₂-6wt% Gd₂O₃ Gd EPMA line profile area mapping . Gd UO_2 Gd Gd . Gd_2O_3 [7] Gd 가 UO_2

- [1] S.M. Ho and K. C. Radford, Nuclear Techology, 73 (1986) 350
- [2] Hubert H. Davis et al., Mater. Sci. Res., 11 (1974) 515.
- [3] H. Assmann and H. Bairiot, "Process and Product Control of Oxide Powder and Pellets for Reactor Fuel Application," in Guide Book on Quality Control of Water Reactor Fuel, Tech. Report series No. 221, IAEA, Vienna, (1983)
- [4] G.S. You, K.S. Kim, D.K. Min and S.G. Ro, J. Nuclear Mat., 277 (2000) 325.
- [5] P. Taylor and R.J. Mceachern, WO 96/36971 (1996)
- [6] J.H. Yang, K.W. Kang, K.S. Kim and K.W. Song, J. Korean Nucl. Soc. 33 (2001) 307
- [7] K.W. Song, K.S. Kim, Y.S. Yoo and Y.H. Jung, J. Korean Nucl. Soc. 30 (1998)128

1. Scrap UO_2 -Gd $_2O_3$ (*case1 : M_3O_8 7+, case2 : as-received M_3O_8 7+)

 $\begin{array}{ccc} 2.\ 475^{o}C & M_{3}O_{8} & XRD \\ (a)\ UO_{2}\mbox{-}6wt\%Gd_{2}O_{3}, (b)\ UO_{2}\mbox{-}10wt\%Gd_{2}O_{3} \end{array}$

3. 475° C M₃O₈ SEM (a) UO₂-6wt%Gd₂O₃, (b) UO₂-10wt%Gd₂O₃

4. M_3O_8 7 UO₂-Gd₂O₃

(a) without M_3O_8 , (b) with 20wt% M_3O_8

7. M₃O₈ 가

8. UO₂-6wt%Gd₂O₃ (a) without M_3O_8 , (b) with 20wt% M_3O_8

9. UO₂-10wt%Gd₂O₃

(a) without M_3O_8 , (b) with 20wt% M_3O_8

