가

An Effect of Corium Composition Variations on Occurrence of a Steam Explosion in the TROI Experiments

Abstract

Recently series of steam explosion experiments have been performed in the TROI facility using corium melts of various compositions. The compositions $(UO_2 : ZrO_2)$ of the corium were 0 : 100, 50 : 50, 70 : 30, 80 : 20 and 87 : 13 in weight percent and the mass of the corium was about 10kg. An experiment using 0 : 100 corium (pure zirconia) caused a steam explosion. An experiment using 50 : 50 corium did not cause a steam explosion while a steam spike occurred in an experiment using 70 : 30 corium which was the eutectic point of corium. A steam spike is considered to be the fact that a triggering of a steam explosion occurred but a propagation process does not occur so as to cause a weak interaction. However, the possibility of a steam explosion occurred in the two experiments using 80 : 20 corium, a steam spike occurred in one experiment but no steam explosion occurred in the other experiment. However, the triggerability of a steam explosion with this composition is not clear since few steam explosions occurred in the previous experiment using 87 : 13 corium of which urania content was the greatest among the experiments performed in the TROI facility. From this, the possibility of a steam explosion or a steam spike is appeared to be high in the non-mush

2003

zone. It is considered that an explosive interaction could easily occur with the eutectic composition. Since the solidification temperature around the eutectic point is low, the melt is likely to maintain its liquid state at the time of triggering so as to cause an explosive phenomenon.

가 [1], . [2, 3, 4], [5, 6, 7], [8, 9, 10] [11]. ANL ZREX [4] JRC-Ispra FARO/KROTOS [5, 6, 7] zirconia TROI [12, 13, 14, 15, 16, 17] zirconia 가 TROI 가 2. TROI TROI 1 (>3000K) 가 가 가 가 (Cold crucible) 150kW, 50kHz 가 , 가 가 가 가 60cm, 150cm, 가 2cm 60cm, 120cm, 가 . 가 1cm . TROI-32 1 가 2 (IRCON 1500~3500°C) 가 (grey-body condition) 가

. (Piezoelectric pressure transducer, PCB Piezotronics Inc., Model 112A, maximum range: 60MPa 20MPa)7

underwater pressure transducer(PCB model W138A26, maximum range : 160MPa)

가

K-type

1.

						VXI	system(Agile	nt
Technology)			가				CCD	
		Pha	ntom V4.0	512	2×512 pixel	1000 frames/	sec	
	CCD							
		가		(zirconia)			
				가	가			
Zr			가		Zr	가	,	
						zirconia	i 가	
가	가	가	가		가		가	
		,	가				plug	
					F	olug		
,]	puncher		,	
triggering		,					,	

,

•

(Druck Co., Model PMP4060, maximum range: 3.5MPa, Rosemount model 1511: 2.0MPa)7

3. TROI

zir	conia			TROI-	27	TROI-32		6		
. TROI	[-27	UO_2	ZrO_2	80 : 20)	9	.5kg			38K
	67cm		(: 60)cm)				. TRO	DI-28
U	$JO_2: ZrO_2 =$	80:20			12.1kg		가 60)cm	가	
e	57cm						. TR	ROI-2	9	
11.5kg 5	0:50		TR	OI-28		가				
. TRO	OI-30		ziro	conia (0	: 100)	3.0kg	TROI-	-28	TROI-29	
가					. TROI-31		70 : 30		12.0kg	
가 6	7cm				(: 60cm)			. ′	TROI-32
	14.6kg	87:13		r	TROI-31					
. TROI-	-27	TROI	-32				2	3		

3.1. TROI-27

TROI-27		17.0kg	UO_2	ZrO_2	(80:20	- UO ₂ : ZrO ₂)	
		•	9.5kg		, 38K	67cm	
2	IRCON	2				,	
	3300K	フ	ł.	3			,
			가			가	
		4				0.15MPa	
		5				, 55kN	
						[16,	17]
steam	n spike 가			. ste	eam spike		,

가

3.2. TROI-28

가 17.0kg TROI-28 . 12.1kg 80 : 20 67cm 6 • 가 3500K 7 • 가 break-가 up 가 8 . 가 9 185K . , 가 가 0.04MPa •

.

3.3. TROI-29

TROI-29				TROI-28			•	
50 : 50	(UO ₂ :	ZrO ₂)	14.3kg		11.5kg	, ,		
67cm			가					
	. 10				,	3450K		
	11							
가			12					
21K	가		13				,	80K
가	가	가						

3.4. TROI-30

•

TROI-30	zirconia		. 12.2kg
zirconia		3.0kg ,	67cm
가			,
		. 14	가
,		,	
		. 15	,
	가 가	가	ア
	100K	가 가	
. 16		,	가 40K .
		,	
가	,	가	フト
	. 17		, 5.5MPa
		가	가

3.5. TROI-31

TROI-31		70:30	$(UO_2 : ZrO_2)$					
17.0kg	70:30		12.0kg			,		67cm
		•	18				,	
가		3450K						
	가 가				19			
	가							
	[15]	steam	spike 가			20	21	
				0.25M	Pa			
80kN								

,

3.6. TROI-32

TROI-32		87:13	(UO ₂ :	ZrO_2)				
가	(cold crucible)						UO_2	
	19.95kg	87 : 13			14.56k	g	,	
67cn	1			22				
	3530K		•	23			,	
가					•			
	. 24				,	27K		•
25				,	210K	가	•	

4.

TROI-27 TROI-32

• $\operatorname{zirconia}(\operatorname{UO}_2:\operatorname{ZrO}_2=0:100)$		
• 25	70 : 30	
$(UO_2 : ZrO_2)$	steam spike 가 . ,	
[15]	, 가	
• $80 : 20$ (UO ₂ : ZrO ₂)	steam spike 가	,
	TROI [16, 17] 가	
80 : 20	, 가 38K	

.

	steam spike 가			
	steam spike			
•	mush zone	50 : 50	87:13	(UO ₂ : ZrO ₂)

	mush zone		가
	,	zirconia	70:30
	가		
가	가		

conversion ratio

- 1. K. MATSUMURA and H. Nariai, "Self-Triggering Mechanism of Vapor Explosions for a Molten Tin and Water System," *Journal of Nuclear Science and Technology*, **33**, *No.4*, 298-306 (1996).
- 2. D. E. MITCHELL, M. L. Corradini and W. W. Tarbell, "Intermediate scale steam explosion phenomena: Experiments and analysis," SAND81-0124, SNL(1981).
- N. YAMANO, Y. Maruyama, T. Kudo, A. Hidaka and J. Sugimoto, "Phenomenological Studies on Meltcoolant Interactions in the ALPHA Program," *Nuclear Engineering and Design*, 155, 369~389 (1995).
- D. H. CHO, D. R. Armstrong and W. H. Gunther, "Experiments on interactions between Zirconiumcontaining melt and water," NUREG/CR-5372 (1998).
- 5. D. MAGALLON, I. Huhtiniemi, and H. Hohmann, "Lessons learnt from FARO/TERMOS corium melt quenching experiments," *Nuclear Engineering and Design*, **189**, 223-238 (1999).
- 6. D. MAGALLON and I. Huhtiniemi, "Corium melt quenching tests at low pressure and subcooled water in FARO," *Nuclear Engineering and Design*, **204**, 369-376 (2001).
- 7. I. HUHTINIEMI and D. Magallon, "Insight into steam explosions with corium melts in KROTOS," *Nuclear Engineering and Design*, **204**, 391-400 (2001).
- K. M. BECKER and K. P. Lindland, "The Effects of Surfactants on Hydrodynamic Fragmentation and Steam Explosions," KTH-NEL-50, RIT in Sweden(1991).
- 9. M. F. DOWLING, B. M. Ip and S. I. Abdel-Khalik, "Suppression of Vapor Explosions by Dilute Aqueous Polymer Solutions," *Nuclear Science and Engineering*, **113**, 300-313 (1993).
- K. H. BANG and G. D. Jeun, "Minimum Film Boiling Temperatures for Spheres in Dilute Aqueous Polymer Solutions and Implications for the Suppression of Vapor Explosions," *Journal of Korean Nuclear Society*, 27, *No.4*, 544-554 (1995).
- J. H. SONG, I. K. Park, Y. J. Chang, Y. S. Shin, J. H. Kim, B. T. Min, S. W. Hong and H. D. Kim, "Experiments on the interactions of molten ZrO2 with water using TROI facility," *Nuclear Engineering and Design*, 213, 97-110 (2002).
- 12. J. H. SONG, I. K. Park, Y. S. Sin, J. H. Kim, S. W. Hong, B. T. Min and H. D. Kim, "Spontaneous Steam Explosions Observed In The Fuel Coolant Interaction Experiments Using Reactor Materials," *Journal of Korean Nuclear Society*, **33**, *No.* 4, 344-357 (2002).

13.	, "TRO	IC	ZrO ₂ /	FCI	,"		
	(20	01).					
14.	, "ZrC	UO_2/ZrO_2	FCI			,",	
		(2001).					
15.	, "T	ROI					,"
			(2002).				
16.	, "	TROI			,,,		
	(20	02).					
17.	, "TRO	I					
	"		(2003)).			

1. Sensor descriptions in the TROI-32 test

Parameter	Sensing location	Sensor description
Melt temperature	Top window	IRCON pyrometer (1500 ~ 3500°C)
Coolant temperature	IVT101 ~ IVT103	0.5mm, Thermocouple
Dynamic pressure in the coolant	IVDP101 ~ IVDP103	PCB model 112A <60MPa
Under-water dynamic pressure	UWDP101 ~ UWDP102	PCB model W138A26 <160MPa
Dynamic load at the test section bottom	IVDL101	PCB model W217B <500kN
Ambient temperature in the pressure vessel	PVT001 ~ PVT005	1.0mm, Thermocouple
Static pressure in the furnace vessel	FVSP001	Rosemount model 1511 <2.0MPa
Static pressure in the pressure vessel	PVSP004, PVSP005	Druck model PMP4060 <3.5MPa
Dynamic pressure in the pressure vessel	PVDP004, PVDP005	PCB model 112A <20MPa
Melt velocity	IVT201 ~ IVT208	0.5mm, Thermocouple
Gas Sampling for Hydrogen detection	GAS005	Gas sampling bottle
FCI phenomena visualization	13 windows available	30pps videos and 1000pps video

	TROI test number	Unit	27	28	29
Melt	Initial Charge Composition	[w/o]	79/20/1	79/20/1	49 5/49 5/
mon	UO2 / ZrO2 / Zr	[,,,,0]	19/20/1	19/20/1	1
	Temperature	[K]	3300	3500	3450
	Charged mass	[kg]	17.0	17.0	14.3
	Initiator mass	[kg]	0.1	0.15	0.15
	Released mass	[kg]	9.510	12.105	11.510
	Plug/puncher diameter	[cm]	8.0/6.5	8.0/6.5	8.0/6.5
	Initial jet diameter	[cm]	8.0	4.5	5.0
	Free fall in gas	[m]	3.8	3.8	3.8
Test	Water mass	[kg]	189	241	241
Section	Initial height	[cm]	67	67	67
	Final height	[cm]	29	64	63
	Cross section	[m2]	0.283	0.36	0.36
	Initial temperature	[K]	335	284	287
	Sub-cooling	[K]	38	89	86
Pressure	Initial pressure(air)	[MPa]	0.110	0.105	0.110
Vessel	Initial temperature	[K]	296	289	289
	Free volume	[m3]	8.023	8.023	8.023
Results	Maximum PV pressurization	[MPa]	0.035	0.040	0.030
	Time to reach peak	[sec]	5	5	4
	Maximum PV heat-up	[K]	60	185	80
	Time to stabilize	[sec]	10	15	15
	Maximum water heat-up	[K]	23	-	21
	Time to stabilize	[sec]	10	-	25
	Steam explosion		SS	NO	NO
	Dynamic pressure peak	[MPa]	0.15	-	-
	Duration	msec	12.0	-	-
	Impulse	KIN	55 40.0	-	-
Dobrig	Total	[kg]	40.0	-	-
Debits	10tai		9.510	1 2.105	0.010
	4 75mm ~ 6 35mm	[kg]	1.000	1.355	1 190
	$2.0 \text{mm} \sim 4.75 \text{mm}$	[ko]	3 210	4 620	4 375
	1 0mm ~ 2 0mm	[kø]	1.875	2,355	2.245
	0.71 mm ~ 1.0 mm	[kg]	0.675	0.790	0.770
	0.425 mm ~ 0.71 mm	[kg]	0.975	0.960	1.020
	<0.425mm	[kg]	0.915	0.765	1.000
H2 gas	Before/After the interaction	[ppm]	229/2788	943/2450	<10/619
0	Mass	[g]	1.831	1.609	0.407
Note			80:20	80:20	50:50.
			Warm	Visualize	Visualize.
			water	2 Video	2 Videos.
			H2(KRIS	H2(KAE	0.5mm
			S)	RI)	TC(IVT)
					H2(KAE
					RI)

2. Initial condition & results for the TROI tests (TROI-27 ~ TROI-29)

* NO : No steam explosion, SS : Steam spike

	TROI test number	Unit	30	31	32
Melt	Initial Charge Composition	[w/o]	0/99/1	69/30/1	86/13/1
	UO2 / ZrO2 /Zr	[]			
	Temperature	[K]	3600	3450	3530
	Charged mass	[kg]	12.165	17.0	19.950
	Initiator mass	[kg]	0.15	0.15	0.15
	Released mass	[kg]	2.980	12.000	14.560
	Plug/puncher diameter	[cm]	8.0/6.5	8.0/6.5	8.0/6.5
	Initial jet diameter	[cm]	3.0	8.0	8.0
	Free fall in gas	[m]	3.8	3.8	3.8
Test	Water mass	[kg]	241	189	189
Section	Initial height	[cm]	67	67	67
	Final height	[cm]	-	46	66
	Cross section	[m2]	0.36	0.283	0.283
	Initial temperature	[K]	284	287	290
	Sub-cooling	[K]	89	86	83
Pressure	Initial pressure(air)	[MPa]	0.114	0.111	0.113
Vessel	Initial temperature	[K]	286	287	293
	Free volume	[m3]	8.023	8.023	8.023
Results	Maximum PV pressurization	[MPa]	0.026	0.026	0.038
	Time to reach peak	[sec]	5	4	6
	Maximum PV heat-up	[K]	40	100	210
	Time to stabilize	[sec]	13	17	12
	Maximum water heat-up	[K]	40	35	27
	Time to stabilize	[sec]	10	20	25 NO
	Steam explosion		SE	SS	NO
	Dynamic pressure peak	[MPa]	5.5	0.25	-
	Duration	msec	5	10	-
	Duration	KIN	-	80 15 0	-
Debris	Total		2 980	12,000	-
Deons	>6 35mm	[kg]	0.345	1 875	1 890
	4 75mm ~ 6 35mm	[kø]	0.270	1.075	1.670
	2.0mm ~ 4.75mm	[kg]	0.875	3.680	6.590
	1.0mm ~ 2.0mm	[kg]	0.620	2.395	1.955
	0.71mm ~ 1.0mm	[kg]	0.210	0.780	0.745
	0.425mm ~ 0.71mm	[kg]	0.260	0.940	0.935
	<0.425mm	[kg]	0.400	0.965	0.775
H2 gas	Before/After the interaction	[ppm]	<10/<10	186/71	89/1010
	Mass	[g]	< 0.007	0.047	0.663
Note			Pure	UWDP	87:13
			ZrO2	Rigid IV	2 UWDP
			Visualize.		\rightarrow thermal
			Broken		transient.
			wall.		Rigid IV

3. Initial condition & results for the TROI tests (TROI-30 ~ TROI-32)

* NO : No steam explosion, SE : Steam explosion, SS : Steam spike

1. Schematic diagram of the TROI facility

2. Melt temperature in the TROI-27 test

4. Dynamic pressures in the TROI-27 test

6. Melt temperature in the TROI-28 test

3. Photograph of melt injection in the TROI-27 test

5. Dynamic load in the TROI-27 test

7. Photograph of melt entry into water in the TROI-28 test

8. Temperatures in the pressure vessel in the TROI-28 test

10. Melt temperature in the TROI-29 test

12. Water temperatures in the interaction vessel in the TROI-29 test

9. Static pressures in the TROI-28 test

11. Photograph of melt propagation in the water in the TROI-29 test

13. Temperatures in the pressure vessel in the TROI-29 test

14. . Photograph of triggering in the TROI-30 test

16. Temperatures in the pressure vessel in the TROI-30 test

18. Melt temperature in the TROI-31 test

15. Water temperatures in the TROI-30 test

17. Dynamic pressures in the TROI-30 test

19. Photograph of melt injection in the TROI-31 test

20. Dynamic pressures in the TROI-31 test

22. Melt temperature in the TROI-32 test

24. Water temperatures in the TROI-32 test

21. Dynamic load in the TROI-31 test

23. Photograph of melt injection in the TROI-32 test

25. Temperatures in the pressure vessel in the TROI-32 test

26. Phase diagram of corium