
2003 추계학술발표회 논문집

한국원자력학회

Conceptual Study of the Application Software Manager Using

the Xlet Model in the Nuclear Fields

Joon-Koo Lee, Heui-Youn Park, In-Soo Koo, Hee-Seok Park*,

Jung-Seon Kim*, Chang-Ho Sohn*

KAERI, *Samchang Enterprise Co., LTD.

150 DukJin Dong YuSung Gu, Taejeon

Abstract

 In order to reduce the cost of software maintenance including software

modification, we suggest the object oriented program with checking the version

of application program using the Java language and the technique of executing

the downloaded application program via network using the application manager.

In order to change the traditional scheduler to the application manager we have

adopted the Xlet concept in the nuclear fields using the network. In usual Xlet

means a Java application that runs on the digital television receiver.

The Java TV Application Program Interface(API) defines an application model

called the Xlet application lifecycle. Java applications that use this lifecycle

model are called Xlets. The Xlet application lifecycle is compatible with the

existing application environment and virtual machine technology. The Xlet

application lifecycle model defines the dialog (protocol) between an Xlet and its

environment

I. Introduction

 In the nuclear field, all applications are programmed by the structural

technique using the Fortran or C language. There is many waste time to

change the application program. After modifying the application program, we

have to compile and link all the application programs again.

In order to reduce the cost of software maintenance including software

modification, we suggest the object oriented program with checking the version

of application program using the Java language and the technique of executing

the downloaded application program via network using the application manager.

In order to change the traditional scheduler to the application manager we will

adopt the Xlet concept in the nuclear fields using the network. In usual Xlet

means a Java application that runs on the digital television receiver.

The Java TV Application Program Interface(API) defines an application model

called the Xlet application lifecycle. Java applications that use this lifecycle

model are called Xlets. The Xlet application lifecycle is compatible with the

existing application environment and virtual machine technology. The Xlet

application lifecycle model defines the dialog (protocol) between an Xlet and its

environment through the following:

 A simple, well-defined state machine

 A concise definition of the application's states

 An API to signal changes between the states

 Application Manager is a part of a digital television receiver's software

operating environment that manages Java applications. The application manager

controls the lifecycle of an Xlet by signalling its state changes. An application

manager is required on a receiver, but its precise behavior is implementation

specific. Generally the requirements of application manager is as follows:

 An Xlet can be destroyed at any time. An application manager is the entity on

a digital television receiver that has ultimate control over the Xlets it manages.

Therefore, the application manager must be able to destroy an Xlet at any time.

 The current state of an Xlet will always be known.

An application manager is responsible for signaling Xlets regarding their

current state. Xlets, however, can also change theirown states, but they must

signal those changes back to the application manager.

 An application manager can change the state of an Xlet.

The primary purpose of an application manager is to direct the state changes of

an Xlet.

 An application manager will know if an Xlet has changed its state.

One of the features of the Xlet application lifecycle API is that the Xlet can

change its own state. Therefore, the application manager must be notified of

this state change so it can track the state of the Xlet.

The states changes of an Xlet are handled by the Xlet itself, i.e., only the Xlet

knows when the state has been successfully changed. The four Xlet states are

Loaded, Active, Paused, and Destroyed. Xlets communicate with the Application

manager about state changes via callbacks. The Xlet signals the success or

failure of such changes with the return value of the callbacks. The definition of

the four Xlet state is as follows;

Loaded

 The Xlet has been loaded and has not been initialized. This state is entered

after the Xlet has been created using new. The no-argument constructor for the

Xlet is called and returns without throwing an exception. The Xlet typically

does little or no initialization in this step. If an exception occurs, the Xlet

immediately enters the Destroyed state and is discarded. Note: This state is

entered only once per instance of an Xlet.

Paused

 The Xlet is initialized and quiescent. It should not be holding or using any

shared resources. This state is entered: From the Loaded state after the

Xlet.initXlet() method returns successfully, or From the Active state after the

Xlet.pauseXlet() method returns successfully, or From the Active state before

the XletContext.notifyPaused() method returns successfully to the Xlet.

Active

 The Xlet is functioning normally and providing service. This state is entered

from the Paused state after the Xlet.startXlet() method returns successfully.

Destroyed

 The Xlet has released all of its resources and

terminated. This state is entered: When the destroyXlet() method for the Xlet

returns successfully. The destroyXlet() method shall release all

resources held and perform any necessary clean up so it may be garbage

collected; or When the XletContext.notifyDestroyed() method returns successfully

to the Xlet. The Xlet must perform the equivalent of the Xlet.destroyXlet()

method before calling XletContext.notifyDestroyed. The Xlet state machine is

designed to ensure that the behavior of an Xlet is as close as possible to the

behavior television viewers expect, specifically:

 FIGURE 1 Xlet State Machine Diagram

II. System Design

II.1 System Configuration

Proposed system configuration consists of maintenance server, application

manager (Xlet Manager), event listener, and hash table as shown in Figure 2.

Figure 2 Proposed System Structure

II.2 Application Manager

The application manager is based on the Xlet application model. The

classes implement the functionality for the Xlet state machine, send notification

about state changes, load Xlet classes, and communicate between Xlet and

Application Manager as shown in Figure 3. And Data Flow Diagram for

Application Manager to execute the application instances is shown in Figure 4.

Figure 3. Application Manager

Figure 4. data Flow Diagram in the application Manager

II.3 Signal Event

The Application Signal Event class is used by the service selection

classes to notify the Application Manager that the current service includes an

Xlet to be signaled for execution.

II.4 Event Listener

Application Signal Event Listener is an event listener interface

implemented by classes to receive notification of Application Signal Event

objects.

II.5 Hash Tables

Hash table is composed of signal table, id table, proxy table and state

table. Signal table contains the information for execution of downloaded

application program including application control code which is described in the

Table 1.

Table 1. Application Control Code

Code Identifier Semantics

0x01 AUTOSTART

The Object Carousel module containing

the class implementing the Xlet interface

is loaded, the class implementing the Xlet

is loaded into the VM and an Xlet object

is instantiated, and the application is

started.

0x02 PRESENT
Indicates that the application is present in

the service, but is not autostarted.

0x03 PREFETCH

Indicates that the receiver should try to

prefetch the application. Exact semantics

to be defined.

0x04 DESTROY

When the control code changes from

AUTOSTART or PRESENT to

DESTROY, the destroy method of the

Xlet is called by the application manager

and the application is allowed to destroy

itself gracefully.

0x05 KILL

When the control code changes to KILL,

the application is terminated by the

application manager.

Id table has identifiers for the application program. And proxy table

contains all necessary information of the application for execution of application

instance, i.e, application loader, application manager, application context, request,

result, etc.. Finally state table contains the state of application instances, loaded,

paused, active, and destroyed.

III. Conclusion

In the nuclear field, all application program is controlled bythe scheduler

without checking the version of application programs. All application program

have to be changed, recompiled, and linked again if there is a minor change in

the algorithm.

Two concept is suggested in this paper. One is the concept of object

oriented programming with checking the version of application program and the

other is the concept of executing the downloaded application program via

network using the application manager depicted in this paper.

The cost of the maintenance of application program will be deducted by

the adoption of these concept in many aspect of the nuclear fields. We can

change and modify the application program in ease by the object concept

without compiling and linking all applications. Also there is no waste time

because of executing the downloaded application program with the application

version via network.

References

[1] "Digital Video Broadcasting (DVB) Multimedia Home Platform (MHP)

Specification 1.0", ETSI TS 101 812, V1.1.1, July 2000.

[2] "Java TV API Reference Implementation Porting Guide", Version 1.0,

Nov. 15, 2000, Sun Microsoft.

[3] "The Essential Guide to Digital Set-top Boxes and Interactive TV",

Gerard O'Driscoll.

[4] "Java TV APIs", Version 1.0, Sun Microsoft.

[5] "Java TV 1.0", Sun Microsoft

	분과별 논제 및 발표자

