2003

MARS 1D MULTID Component

An Implementation and Assessment of viscous Stress Model in MARS 1D MULTID Component

Abstract

It has been a strong issue for nuclear system and safety simulation codes to imply a multidimensional analysis capability. Currently, a few codes are successfully implying the multidimensional capability but only with lateral convective terms in momentum equation. In KAERI, an effort to give an ability to simulate the multidimensional geometry with the shear stress terms as well as the lateral convective terms has been

devoted. As the result, newly developed MARS 1D component "MULTID" makes it possible to model a large bulk fluid volume both with the Cartesian and cylindrical coordinates. For the implementation of shear stresses, Pandtl's Mixing Length Theory is simply applied to get a turbulent viscosity. Several problems are described and solved with the MARS code. The results show qualitatively reasonable agreements with other CFD code results.

1.

MARS2.1 RELAP5/MOD3.2.2 COBRA-TF[3] [1,2] 3 . INEEL NRC RELAP5/MOD3.2.2 RELAP5/3D[4] . RELAP5/3D DOE INEEL . NRC CAMP RELAP5/MOD3.3 . MARS NRC CAMP NRC NRC RELAP5 **Cross Flow Junction** . Lateral Momentum Flux, Viscous/Turbulent Shear Stress Full 3D 가 MARS 3D Plant 3D MARS 1D 가 MARS 1D . 가 가 **MULTID** Component 1 MARS . .

1. 가

	MARS 1D	MARS 3D	TRACE[5] & RELAP5/3D
Lateral convection term	Y (new)	Y (original)	Y
Viscous stress term	Y (new)	Y (new)	Ν
Modular 3D component	Y (new)	Ν	Y

2.

1D

MARS 1D

(phase)

. MARS 1D

Continuity Equation

.

$$\frac{\partial}{\partial t} \left(\alpha_{g} \rho_{g} \right) + \frac{1}{A} \frac{\partial}{\partial x} \left(\alpha_{g} \rho_{g} V_{g} A \right) = \Gamma_{g}$$
⁽¹⁾

$$\frac{\partial}{\partial t} \left(\alpha_f \rho_f \right) + \frac{1}{A} \frac{\partial}{\partial x} \left(\alpha_f \rho_f V_f A \right) = \Gamma_f$$
⁽²⁾

Momentum Equation (nonconservative form)

.

$$\alpha_{f}\rho_{f}A\frac{\partial V_{f}}{\partial t} + \frac{1}{2}\alpha_{f}\rho_{f}A\frac{\partial V_{f}^{2}}{\partial x} = -\alpha_{f}A\frac{\partial P}{\partial x} + \alpha_{f}\rho_{f}B_{x}A - (\alpha_{f}\rho_{f}A)FWF(V_{f})$$

$$+ \Gamma_{f}A(V_{fI} - V_{f}) - (\alpha_{f}\rho_{f}A)FIF(V_{f} - V_{g})$$

$$- C\alpha_{g}\alpha_{f}\rho_{m}A\left[\frac{\partial(V_{f} - V_{g})}{\partial t} - V_{f}\frac{\partial V_{g}}{\partial x} + V_{g}\frac{\partial V_{f}}{\partial x}\right]$$

$$\alpha_{g}\rho_{g}A\frac{\partial V_{g}}{\partial t} + \frac{1}{2}\alpha_{g}\rho_{g}A\frac{\partial V_{g}^{2}}{\partial x} = -\alpha_{g}A\frac{\partial P}{\partial x} + \alpha_{g}\rho_{g}B_{x}A - (\alpha_{g}\rho_{g}A)FWG(V_{g})$$

$$+ \Gamma_{g}A(V_{gI} - V_{g}) - (\alpha_{g}\rho_{g}A)FIG(V_{g} - V_{f})$$

$$- C\alpha_{g}\alpha_{f}\rho_{m}A\left[\frac{\partial(V_{g} - V_{f})}{\partial t} + V_{f}\frac{\partial V_{g}}{\partial x} - V_{g}\frac{\partial V_{f}}{\partial x}\right]$$

$$(3)$$

. 3 Momentum Equation Set (Non Conservative Form)

1

$$\rho \left(\frac{\partial \vec{V}}{\partial t} + \vec{V} \cdot \nabla \vec{V} \right) = -\nabla p + \vec{\sigma} + \rho \vec{f} \tag{5}$$

$$\vec{V} \cdot \nabla \vec{V} = \begin{pmatrix} V_x \frac{\partial V_x}{\partial x} + V_y \frac{\partial V_x}{\partial y} + V_z \frac{\partial V_x}{\partial z} \\ V_x \frac{\partial V_y}{\partial x} + V_y \frac{\partial V_y}{\partial y} + V_z \frac{\partial V_y}{\partial z} \\ V_x \frac{\partial V_z}{\partial x} + V_y \frac{\partial V_z}{\partial y} + V_z \frac{\partial V_z}{\partial z} \end{pmatrix}$$
(6)

$$\vec{V} \cdot \nabla \vec{V} = \begin{pmatrix} V_r \frac{\partial V_r}{\partial r} + \frac{V_{\theta}}{r} \frac{\partial V_r}{\partial \theta} + V_z \frac{\partial V_r}{\partial z} \\ V_r \frac{\partial V_{\theta}}{\partial r} + \frac{V_{\theta}}{r} \frac{\partial V_{\theta}}{\partial \theta} + \frac{V_r V_{\theta}}{r} + V_z \frac{\partial V_{\theta}}{\partial z} \\ V_r \frac{\partial V_z}{\partial r} + \frac{V_{\theta}}{r} \frac{\partial V_z}{\partial \theta} + V_z \frac{\partial V_z}{\partial z} \end{pmatrix}$$
(7)

MARS 1D Momentum Equation 3 x-y-z Momentum Equation Lateral Momentum Term Shear Term . , Viscosity가 Constant 가 x-Momentum Time Averaged Equation

$$\alpha_{g} \rho_{g} A \frac{\partial u_{g}}{\partial t} + \frac{1}{2} \alpha_{g} \rho_{g} A \frac{\partial u_{g}^{2}}{\partial x} + \alpha_{g} \rho_{g} A v_{g} \frac{\partial u_{g}}{\partial y} + \alpha_{g} \rho_{g} A w_{g} \frac{\partial u_{g}}{\partial z} = - \alpha_{g} A \frac{\partial P}{\partial x} + \alpha_{g} \rho_{g} B_{x} A - \alpha_{g} \rho_{g} A (FWG) u_{g} + \Gamma_{g} A (u_{gI} - u_{g}) - \alpha_{g} \rho_{g} A (FIG) (u_{g} - u_{f}) - C \alpha_{g} \alpha_{f} \rho_{m} A \left[\frac{\partial (u_{g} - u_{f})}{\partial t} + u_{f} \frac{\partial u_{g}}{\partial x} - u_{g} \frac{\partial u_{f}}{\partial x} \right]$$

$$+ \alpha_{g} A (\mu_{g} + \mu_{g,T}) \left[\frac{\partial^{2} u}{\partial x^{2}} + \frac{\partial^{2} u}{\partial y^{2}} + \frac{\partial^{2} u}{\partial z^{2}} \right]$$

$$(8)$$

1 2 y-Direction 가 . 1 x - Direction (9) . (8)

$$\begin{aligned} \left(\alpha_{g}\rho_{g}\right)_{j,k}^{n}\left(u_{g}^{n+1}-u_{g}^{n}\right)_{j,k}\Delta x_{j,k}+\frac{1}{2}\left(\alpha_{g}^{*}\rho_{g}^{*}\right)_{j,k}^{n}\left[\left(u_{g}^{2}\right)_{L}^{n}-\left(u_{g}^{2}\right)_{K}^{n}\right]\Delta t-\frac{1}{2}\left[\left(\alpha_{g}^{*}\rho_{g}^{*}\right)_{j,k}^{n}VISG_{j,k}^{n}\right]\Delta t\\ &+\frac{1}{2}\left[\left(\alpha_{g}^{*}\rho_{g}^{*}\right)_{j,k+1}^{n}\left(u_{g}^{*}\right)_{j,k+1}^{n}\left(v_{g,j,k+1}^{n}+v_{g,j-1,k+1}^{n}\right)\right]\Delta x_{j,k}}{\Delta y_{j,k}}\Delta t=-\left(\alpha_{g}\right)_{j,k}^{n}\left(P_{L}-P_{K}\right)^{n+1}\Delta t\\ &+\left[\left(\alpha_{g}\rho_{g}\right)_{j,k}^{n}g-\left(\alpha_{g}\rho_{g}\right)_{j,k}^{n}FWG_{j,k}^{n}u_{g}^{n+1}-\left(\Gamma_{g}\right)_{j,k}^{n}\left(u_{g}-u_{g,l}\right)_{j}^{n+1}\right]\Delta x_{j,k}\Delta t\\ &-\left[\left(\alpha_{g}\rho_{g}\right)_{j,k}^{n}HLOSSG_{j,k}^{n}u_{g,j,k}^{n+1}\right]\Delta t-\left(\alpha_{g}\rho_{g}\right)_{j,k}^{n}\left(u_{g}-u_{f}\right)_{j}^{n+1}\Delta x_{j,k}\Delta t\\ &+VIRTUAL\ MASS\ TERM\\ &+\left(\alpha_{g}\right)_{j,k}^{n}\left(\mu_{g}+\mu_{g,T}\right)_{j,k}^{n}\left[\left(u_{g,j,k+1}^{n}-u_{g,j,k}^{n}\right)\frac{1}{\Delta y_{j,k+1}}-\left(u_{g,j,k}^{n}-u_{g,j,k-1}^{n}\right)\frac{1}{\Delta y_{j,k}}\right]\frac{\Delta x_{j,k}}{\Delta y_{j,k}}\Delta t\end{aligned}$$
(9)

3 z-Direction

$$\begin{aligned} &\left(\alpha_{g}\rho_{g}\right)_{j,k,l}^{n}\left(u_{g}^{n+1}-u_{g}^{n}\right)_{j,k,l}\Delta x_{j,k,l}+\frac{1}{2}\left(\alpha_{g}^{*}\rho_{g}^{*}\right)_{j,k,l}^{n}\left[\left(u_{g}^{2}\right)_{L}^{n}-\left(u_{g}^{2}\right)_{L}^{n}\right]\Delta t-\frac{1}{2}\left[\left(\alpha_{g}^{*}\rho_{g}^{*}\right)_{j,k,l}^{n}VISG_{j,k,l}^{n}\right]\Delta t \\ &+\frac{1}{2}\left[\left(\alpha_{g}^{*}\rho_{g}^{*}\right)_{j,k,l}^{n}\left(u_{g}^{*}\right)_{j,k,l}^{n}\left(v_{g,j,k,l,l}^{n}+v_{g,j-1,k,l,l}^{n}\right)\right]\frac{\Delta x_{j,k,l}}{\Delta y_{j,k,l}}\Delta t \\ &+\frac{1}{2}\left[\left(\alpha_{g}^{*}\rho_{g}^{*}\right)_{j,k,l}^{n}\left(u_{g}^{*}\right)_{j,k,l}^{n}\left(v_{g,j,k,l+1}^{n}+v_{g,j-1,k,l}^{n}\right)\right]\frac{\Delta x_{j,k,l}}{\Delta y_{j,k,l}}\Delta t \\ &+\frac{1}{2}\left[\left(\alpha_{g}^{*}\rho_{g}^{*}\right)_{j,k,l}^{n}\left(u_{g}^{*}\right)_{j,k,l}^{n}\left(w_{g,j,k,l+1}^{n}+v_{g,j-1,k,l}^{n}\right)\right]\frac{\Delta x_{j,k,l}}{\Delta z_{j,k,l}}\Delta t \\ &+\frac{1}{2}\left[\left(\alpha_{g}^{*}\rho_{g}^{*}\right)_{j,k,l}^{n}\left(u_{g}^{*}\right)_{j,k,l}^{n}\left(w_{g,j,k,l+1}^{n}+w_{g,j-1,k,l}^{n}\right)\right]\frac{\Delta x_{j,k,l}}{\Delta z_{j,k,l}}\Delta t \\ &=-\left(\alpha_{g}\right)_{j,k,l}^{n}\left(P_{L}-P_{K}\right)^{n+1}\Delta t \\ &+\left[\left(\alpha_{g}\rho_{g}\right)_{j,k,l}^{n}g-\left(\alpha_{g}\rho_{g}\right)_{j,k,l}^{n}FWG_{j,k,l}^{n}u_{g}^{n+1}-\left(\Gamma_{g}\right)_{j,k,l}^{n}\left(u_{g}-u_{g,l}\right)_{j,k,l}^{n+1}\right]\Delta x_{j,k,l}\Delta t \\ &-\left[\left(\alpha_{g}\rho_{g}\right)_{j,k,l}^{n}HLOSSG_{j,k,l}^{n}u_{g}^{n+1}\right]\Delta t-\left(\alpha_{g}\rho_{g}\right)_{j,k,l}^{n}\left(u_{g}-u_{g}\right)_{j,k,l}^{n+1}\Delta x_{j,k,l}\Delta t + VIRTUAL MASS TERM \\ &+\left(\alpha_{g}\right)_{j,k,l}^{n}\left(\mu_{g}+\mu_{g,T}\right)_{j,k,l}^{n}\left[\left(u_{g,j,k+1,l}^{n}-u_{g,j,k,l}^{n}\right)\frac{1}{\Delta y_{j,k+1,l}}-\left(u_{g,j,k+1,l}^{n}-u_{g,j,k-1,l}^{n}\right)\frac{1}{\Delta z_{j,k,l}}\right]\Delta x_{j,k,l}\Delta t \\ &+\left(\alpha_{g}\right)_{j,k,l}^{n}\left(\mu_{g}+\mu_{g,T}\right)_{j,k,l}^{n}\left[\left(u_{g,j,k,l+1}^{n}-u_{g,j,k,l}^{n}\right)\frac{1}{\Delta z_{j,k+1,l}}-\left(u_{g,j,k+1,l}^{n}-u_{g,j,k-1,l}^{n}\right)\frac{1}{\Delta z_{j,k,l}}\right]\Delta x_{j,k,l}\Delta t \\ &+\left(\alpha_{g}\right)_{j,k,l}^{n}\left(\mu_{g}+\mu_{g,T}\right)_{j,k,l}^{n}\left[\left(u_{g,j,k,l+1}^{n}-u_{g,j,k,l}^{n}\right)\frac{1}{\Delta z_{j,k+1,l}}-\left(u_{g,j,k+1,l}^{n}-u_{g,j,k-1,l}^{n}\right)\frac{1}{\Delta z_{j,k,l}}\right)\frac{1}{\Delta z_{j,k,l}}\Delta t \\ &+\left(\alpha_{g}\right)_{j,k,l}^{n}\left(\mu_{g}+\mu_{g,T}\right)_{j,k,l}^{n}\left[\left(u_{g,j,k,l+1}^{n}-u_{g,j,k,l}^{n}\right)\frac{1}{\Delta z_{j,k+1,l}}-\left(u_{g,j,k+1,l}^{n}-u_{g,j,k-1,l}^{n}\right)\frac{1}{\Delta z_{j,k,l}}\right)\frac{1}{\Delta z_{j,k,l}}\Delta t \\ &+\left(\alpha_{g}\right)_{j,k,l}^{n}\left(u_{g}+u_{g,T}\right)_{j,k,l}^{n}\left[\left(u_{g,j,k,l+1}^{n}-u_{g,j,k,l}^{n}\right)\frac{1}{\Delta z_{j,k+1,l}}-\left($$

(10)

.

х	(- D	irectior	n Vapor	Phase				3	
6		Set				Sum	and Differ	rence	
			. Convectio	on Term	Diffusion	Term	Explicit		
Numerical	Sta	ability		(11)	Co	urant L	imitation	Diffusion	Limit

$$\Delta t \le \Delta x / u$$

$$\Delta t \le \Delta x^2 / (\rho(\mu + \mu_T))$$
(11)

VolumeVolume6MARSJunction Component가Junction. (10)VISG1DParameter.Explicit1D MULTIDInputVISG.

Prandtl' s Mixing Length Theory . Prandtl' s Mixing Length Theory Mixing Length , 3D Bulk Deformation Tensor

. Cartesian Coordinate Bulk Deformation Tensor

$$\vec{D} = \frac{1}{2} \begin{pmatrix} 0 & \frac{\partial V_x}{\partial y} + \frac{\partial V_y}{\partial x} & \frac{\partial V_x}{\partial z} + \frac{\partial V_z}{\partial x} \\ \frac{\partial V_x}{\partial y} + \frac{\partial V_y}{\partial x} & 0 & \frac{\partial V_y}{\partial z} + \frac{\partial V_z}{\partial y} \\ \frac{\partial V_x}{\partial z} + \frac{\partial V_z}{\partial x} & \frac{\partial V_y}{\partial z} + \frac{\partial V_z}{\partial y} & 0 \end{pmatrix}$$
(12)

$$\frac{\mu_T}{\rho} = \ell_m^2 \sqrt{2D \cdot D} \tag{13}$$

$$\sqrt{2\vec{D}\cdot\vec{D}} \cong \left|\frac{\partial V_x}{\partial y} + \frac{\partial V_y}{\partial x}\right| + \left|\frac{\partial V_x}{\partial z} + \frac{\partial V_z}{\partial x}\right| + \left|\frac{\partial V_y}{\partial z} + \frac{\partial V_z}{\partial y}\right|$$
(14)

Cylindrical Coordinate Bulk Deformation Tensor *D*

Cylindrical Coordinate

 $\vec{D} = \frac{1}{2} \begin{pmatrix} 0 & \frac{1}{r} \frac{\partial V_r}{\partial \theta} + \frac{\partial V_{\theta}}{\partial r} - \frac{V_{\theta}}{r} & \frac{\partial V_r}{\partial z} + \frac{\partial V_z}{\partial r} \\ \frac{1}{r} \frac{\partial V_r}{\partial \theta} + \frac{\partial V_{\theta}}{\partial r} - \frac{V_{\theta}}{r} & 0 & \frac{\partial V_{\theta}}{\partial z} + \frac{1}{r} \frac{\partial V_z}{\partial \theta} \\ \frac{\partial V_r}{\partial z} + \frac{\partial V_z}{\partial r} & \frac{\partial V_{\theta}}{\partial z} + \frac{1}{r} \frac{\partial V_z}{\partial \theta} & 0 \end{pmatrix}$ (15)

		(ℓ_m)가	•	
MARS	가	0.3		
		2		

-								
2	Turbulent	Mixina	Length Sc	ales for	Various Si	mple Flow	Geometries	[6]
<u> </u>	rarbaioni	mining	Longin Ooi		vanoao on	111010 1 1010	000111011100	1 ~ 1

Flow	Turbulent length scale, ℓ	Length scale, L
Mixing layer	0.07 <i>L</i>	Layer width
Jet	0.09 L	Jet half width
Wake	0.16 <i>L</i>	Wake half width
Axisymmetric jet	0.075 <i>L</i>	Jet half width
Boundary layer Viscous sub-layer Log-law layer Outer layer	0.09 <i>L</i>	Boundarylayer thickness
Channel	$L[0.14 - 0.08(1 - y/L)^{2} - 0.06(1 - y/L)^{4}]$	Channel half width

3.

3.1 Pure radial flow

	2	Cartesian	Coordinate				Pure	Radia	al Flow
		. 60			3	,	1	.0 m	. 1
300K			Volume		Volume				r -
			1	Volume				,	Volume
			. МА	RS 2.2					

4. Pure Radial Flow

5. Pure Azimuthal Flow

3.2 Pure Azimuthal Flow

Pure Radial Flow		가		Volume
Azimuthal	가			Analytic
Solution		Volume	5	

,

•

7. Large Block Problem

4.

4.1 Expansion Pipe 9 Expansion Pipe 0.01 m 가 5 . Volume Pipe . Pipe 0.9 m , 0.1 m 9 Volume 0.5 m/s 1.5MPa, 400K . CFD . 가가 FLUENT .

 0.01 m
 Volume
 . θ

 4
 θ .

9. Expansion Pipe

minimum= -0.4500	maximum= 0.4500	A PLENT (1) Parent la	-	- C X
8		1.8%+40		
7		1.02+00		
		490-00	22	
6		176-00		
5		140-00	種	
		800-00		
•		120-00		
3		-16.40		
		10-01		
2		191-04		
		NEW DATE OF THE OWNER WATCHING		1241341
1 2	J 4 5	Volecting Verdame Califord Sty Yellowing Magnitude (ed.	4	ROBERS BLOOP OF A
(a) MARS		(b) FLUEN	ΙТ	
	10. Expansion Pipe Pr	oblem		
10 FLU	ENT MARS	Grid	Fine	
	Oten dend (c. Mede		1 1110	
	Standard $K - \varepsilon$ Mode	I	,	
		ſ	MARS	
			Prandtl'	s Mixing Length
Theory				
4.2 Lorgo Blook	Droblom with Turbul			
4.2 Large Diock		ence		
3.3	7		MARS	Cartesian
Coordinate				
MAR	S			가
	-			·
11	V View Plan			3.3
				. 5.5
	가			3
	. 11 (b)	, у	Block	
가	. V _x Viev	w Plane E	Block	
	가	. Y-		
가	. 11 (a)		가	. Block
		가		フトフト
·		<i>,</i> .		
	,	(miz	xing layer)	
$(\ell_m = 0.0/L),$	L	(=0.3m)		

11. MARS (-0.5 to 0.5 m/s range bitmap)

13. FLUENT V_y

5	
J	•

	가	MULTID	Component	
				Lateral
plicit Scheme				
eory				,
			가	
e	plicit Scheme eory	가 plicit Scheme eory .	가 MULTID plicit Scheme eory .	가 MULTID Component plicit Scheme eory . 가

[1]	ű	가	/	",
	KAERI/RR-2235/2001,	(2002)		
[2]	, " MARS2.2 Coc	le manual, Input require	ements", KAE	RI/TR-2529/2003,
	(2003)			
[3]	C.W. Stewart, J.S. Barnha	rt, and A.S. Koontz, Imp	provements to	the COBRA-TF
	(EPRI) Computer Code for	Steam Generator Anal	ysis, EPRI NP-	1509 (1980).

[4] RELAP5/3D Development Team, " RELAP5/3D Code Manuals, Volumes I, II, IV,

and V," Idaho National Engineering and Environmental Laboratory, INEEL- EXT-98-00834, Revision 1.1b. (1999)

- [5] Kelly, J. M., TRAC-M Code Consolidation and Development, Fall 2002 CAMP Meeting, Alexandria, Virginia Sponsored by USNRC, October 31 (2002)
- [6] K. K. Versteeg and W. Malalasekera, An Introduction to Computational Fluid Dynamics, LONGMAN (1995).