

)

(

Abstract

A one-dimensional thermal-hydraulic analysis computer code was developed for the thermal sizing and performance analysis of a Combined Steam Generator-IHX Heat Exchanger (Separated Type). The flow regions of water/steam side were divided into four regions, which are sub-cooled, saturated, film boiling, and super-heated regions. Sodium flows inside hot side tube and feed water is provided into the cold side tube. Pb-Bi is used for shell side coolant and flows by a circulating pump. The calculation results showed that when the length of heating tube was 38 m, the heat transfer rate of the unit was 195 MWt.

1.

(Na)

가

NNC (shell) 가 / / , (Pb-Bi), (Gallium) -(Advanced Intermediate Heat Exchanger) . / 가 가 , , , 가 . , , . 2. 가 . 1 (homogeneous) 1 . 가 가 -• 가 , 가

.

/

/

•

.

1

2.1 (가)

,

 $w_s = const.$

 $w_w = const.$

, ,

, W_s : shell side flow rate, W_w : tube side flow rate

()

(control volume) 가 . , 가

$$\Delta p = \Delta p_{acc,i} + \Delta p_{fric,i} + \Delta p_{grav,i}$$

, $\Delta p_{acc,i}$: accelerational pressure drop

$$= \left(\frac{G_w^2}{\rho}\right)_i - \left(\frac{G_w^2}{\rho}\right)_{i-1}$$

 $\Delta p_{fric,i}$: frictional pressure drop

$$= f \frac{\Delta L_l}{d_i} \frac{G_w^2}{2\rho_l} + f \frac{\Delta L_{2\phi}}{d_i} \overline{\phi}_{lo}^2 \frac{G_w^2}{2\rho_f} + f \frac{\Delta L_g}{d_i} \frac{G_w^2}{2\rho_g}$$

 $\Delta p_{grav,i}$: gravitational pressure drop

$$= \rho_l g \Delta L_l + \left\langle \overline{\rho} \right\rangle g \Delta L_{2\phi} + \rho_g g \Delta L_g$$

 $\overline{\phi}_{lo}^2$: two-phase multiplier

 $\left\langle \overline{\rho} \right\rangle_{i} = \frac{\left\langle \rho \right\rangle_{i} + \left\langle \rho \right\rangle_{i-1}}{2}$: average density for the i-th control volume

$$\langle \rho \rangle_i = \frac{1}{v_f + \langle x \rangle_i v_{fg}}$$
: average density for the i-th node

.

.

()

(control volume)

,

$$\Delta Q = U \,\Delta A_o \Delta T_o$$

$$\Delta Q = w_s \left(h_{s,in} - h_{s,out} \right) \qquad .$$

$$\Delta Q = w_w \left(h_{w,out} - h_{w,in} \right)$$

$$, \ \Delta T_o:$$

$$= \frac{\left(T_{s,in} + T_{s,out} \right)}{2} - \frac{\left(T_{t,in} + T_{t,out} \right)}{2}$$

 ΔA_o :

$$=\pi d_o \Delta L$$

•

,

$$\Delta A_o = \frac{\Delta Q}{U \,\Delta T_o}$$

$$\left|\frac{T-T^{old}}{T}\right| < \varepsilon, \quad \left|\frac{P-P^{old}}{P}\right| < \varepsilon, \quad \varepsilon = 1.E-5$$

가

,

 $\Delta Q = U \,\Delta A_o \Delta T_o$

가

,

,

.

$$\left|T-T^{old}\right| < \varepsilon, \quad \varepsilon = 0.001,$$

sizing

3 . 4 flow chart .

3 Thermal Sizing

. /		
, Nucleate boiling Film boiling	,	
Nucleate boiling Film boiling		Dryout
. Fouling factor /		25,000

W/m²-°C

- 1
- Mori-Nakayama
- - Gunter-Shaw
- - Lubarsky-Kaufman
- - Kalish-Dwyer
 - 2

- Mori-Nakayama
- •
- Gunter-Shaw
- /
- Pre-heat : Dittus-Boelter
- Nucleate Boiling : Thom
- Critical Quality : Duchatelle et al.
- Film Boiling : Bishop et al.
- Super-heat : modified Bishop
- / Fouling factor : 25,000 W/m²-°C
- - Kalish-Dwyer

3

3				
			[kg/s]	1071.5
			[kg/s]	87.74
			[kg/s]	6500
	[/]	393/225
			[m]	0.025
			[m]	38
			[deg.]	17.6
			[m]	0.0234
			[m]	0.019
				15
				5
P/D				1.5
			[C]	530
			[C]	230
			[MPa]	15.5
				2 1/4 Cr-Mo

•

.

4		
	[MWt]	195.27
	[C]	471.4
	[C]	322.4
	[C]	528.2

6

7 , ,

 H. Horiike, S. Inoue, S. Miyamoto, K. Miyazaki and N. Yamaoka, Advanced Intermediate Heat Exchanger for FBR, 11th ICONE, ICONE11-36293, 2003. 4
 , SG , LMR/FS100-AR-01Rev.0/03, 2003. 5.30
 , HSGSA , KALIMER/FS-4CM-98-001, 1998