RELAP/CANDU 2, 3, 4 35%

Improvement of ECCS and Steam Generator Feedwater Supply System Model in the Simulation of 35% RIH Break Analysis using RELAP/CANDU for Wolsong units 2/3/4

ABSTRACT

The cooling capability assessment of the Emergency Core Cooling System (ECCS) for large loss of coolant accident (LLOCA), 35% break at the core inlet header in Wolsong units 2/3/4 was performed to improve safety analysis methodology for CANDU Reactors. In this study, ECCS and steam generator feedwater supply control system model were improved to reform the discrepancies identified from the previous study. The results of RELAP/CANDU were compared with those of CATHENA. According to the results, the performance of ECCS was estimated to have sufficient capability for LLOCA and was well agreed with CATHENA simulation. In the future study, three dimensional power distribution in the core should be considered in the safety analysis. Besides, it is also concluded that the muti-channel analysis determination of critical pass location 3-Dimensional thermal-hydraulic analysis in the critical channel during the accident should be also included in the safety analysis.

2003

가 1983 20 1 가 가 , 1994 2/3/4 4 4 가 가 , 가 가 가 NRC 가 가 • , 가 가 LOCA 가 가 RELAP/CANDU[1, 2] . , [3] 2, 3, 4 35% 가 2, 3, 4 , (FSAR : Final Safety Analysis Report) CATHENA MOD3.5/Rev. 1 [4]. 2. 2.1 가 2 1 95 4 (Pipe-100, 200, 300, 400) (Pump-105, 205, 4 305, 405) (Pipe-120/130, 220/230, 320/330, 420/430), (Vol-125/135, 225/235, 325/335, 425/435) (Vol-264, 164, 464, 364) . Heat Structure(Vol-248 258, 14 , (Vol-265, 165, 465, 8 158, 448 458, 348 358) 365), Riser (Vol-269/271, 169/171, 469/471, 369/371), (Vol-276, 176, 476, 376), (Vol-274/266, 174/166, 474/466, 374/366) Dome(Vol-278, 178, 478, 378)

(v 01-.

(<5.25MPa) 가 가 (Crash Cooldown) (MSSV : Main Steam Safety Valve, V602, 612, 622, 632) Runback (V645) . , 4 35% (V960) (Vol-965) (V503, V513) (< 5.25 M P a)0.43 가 1.2 가 가 5 가 Runback . 가 .

2.2

 7
 RELAP/CANDU

 (nodalization)
 .

 .
 , RELAP/CANDU

 2, 3
 [3].

RELAP/CANDU CATHENA CATHENA . 4 . (800) 가 가 0.5m가 5.25MPa 가 time dependent 가 1m가 v olume (900) (V910) 200 m³가 time dependent volume(920) (V930) . .

, (V921, 922, 923, 924) .

892, 897, 832, 837, 857, 823)

.

. , 45% F.P.(Fission Power) - 100% F.P. 2 가 , 10% F.P. - 45% F.P. 1 (0% - 10% F.P.) [5]. , , RELAP/CANDU control variable . CANDU-600 (1) (2) [6]. FWFLOW_i = $\left[\frac{(P_{FDWATER} - P_{SGENi})}{1.41E6}\right]^{0.5} * 239.30 * WLi,$ (i=1, 4) (1) $P_{FDWATER} = 7.26E6 - 1.1E6(\sum FWFLOW_i/957.2)^2$, (i=1, 4) (2) P_{SGENi} , WL_i

1 가 4 iteration RELAP/CANDU time dependent volume time dependent junction . , RELAP/ CANDU time dependent volume 4 time dependent junction 4 time dependent volume time dependent junction (1), (2)• . (D D

FWFLOW_i =
$$\left[\frac{(P_{FDWATERi} - P_{SGENi})}{1.41E6}\right]^{0.5} * 239.30 * WLi, (i=1, 4)$$
 (3)

$$P_{FDWATERi} = 7.26E6 - 1.1E6*[FWFLOW_{i}/239.3]^{2}, \qquad (i=1, 4)$$
(4)

(4) (3)

$$F WF LOW_{i} = \sqrt{\frac{(7.26*10^{6} - P_{SGENi})/1.41*10^{6}}{1.7463*10^{-5}*WL_{i}^{-2} + 1.36235*10^{-5}}}, \quad (i=1, 4)$$
(5)

,

(5) フトフト

가

가

.

 7 i
 2, 3, 4

 , 7 i
 7 i

 35%

 RELAP/CANDU

 , CATHENA

 5
 CATHENA
 ,

 CATHENA
 7
 .

 ,
 7
 7

 (V921, 922, 923, 924)
 .
 ,

 IHD2
 OHD1, IHD4
 OHD37
 ,

 IHD2
 OHD1 Vol. 804
 , IHD4
 OHD3
 Vol. 807

 CATHENA
 CATHENA
 CATHENA

.

 CATHENA
 250kg/sec

 .
 7

 0
 7!

 27!
 7!

 6
 .

8 CATHENA . 400 CATHENA 7, 7, 7 RELAP/CANDU CATHENA iteration

, CATHENA

200 7 350 7 . CATHENA , CATHENA 7 , 7 . . , CATHENA .

300 , 7[†]7[†] . 900 CATHENA 7[†]7[†] . 10 CATHENA 7[†] 7[†]

, · , · , · . , 가 , 600

가 가 .

4	(IHD8)	35%			11
		가	,	12	2
			가		가
()	(0.43sec)			
	,	(HPE	2CC) 가		
가		20			(
13).		30		가	
		,			
	가	(14)		フト	

~1		(14).		~1	
	가		()	(15).	
가					가	
(16)	. 45					
	(17).				

					(3)		
		가		(18).			,	4
	가				OH	D5	IHD8		
(15).		2.	5MPa					
(19).	CATH	IENA		7	የ			
					3		(SG3)	OHI)5
IHD6					•		3		
가 .		(M)	PECC)				가	283.75	
,		(LP	PECC)	654.77			(5).	
	가								
						(15).		
가		(10)						
		,		가			가		
•						가			
	(17).			250kg/sec				
	(6).			가					
			(10).			2		
				•		RELA	P/CANDU		
CATHENA									
4.									
	-1						-1		
DELAD/CANDU	71						71		
RELAP/ CANDU									
•						2 2	, 1	250/	
				•		2, 3,	4	33%	
71					23	1			
CATHENA	MOD3 5/R	-v 1			2, 3,	-			
CATHERA	WI OD 5.5/ R						•		
RELAP/CANDU								_	
					, . . .			CATHE	ENA
		• `			(critical	path)			가
	(multi cha	nnel)				,			
2		(t	Doint Ki	inetics m	odel)				
3				•					

	1.	(103%	가	
		RELAP/CANDU	CATHENA	RELAP/CANDU[3]
RIH	[MPa(a)]	11.355	11.4	11.318
RIH	[K]	535.48	541	536.87
ROH	[MPa(a)]	10.0	10.0	10.0
ROH	[℃]	583.72	583.5	583.46
ROH	[%]	2.44	4.8	2.48
	[MPa(a)]	9.58	9.58	9.55
	[MPa(d)]	1.75	1.80	1.73
	[kg/sec]	1900.2	1897	1900.1
	[M W]	527.875	527.875	513.
가	[m]	8.46	12.48	9.188
	[MPa(a)]	4.83	4.69	4.94
	[K]	534.9	533	536.2
	[kg/sec]	1061.47	1018	1046.08
	[kg/sec]	1066.90	1061	1025.16
	[K]	460.53	459	460.65
		3.9:1	5.1:1	4.2:1

35%

	RELAP/CANDU	CATHENA	RELAP/CANDU[3]
35% (4, IHD8)	0.0sec	0.0sec	0.0sec
	0.43sec	0.43sec	0.43sec
	7.86sec	8.6sec	7.46sec
	12.2sec (1297K)	17.59sec (1308K)	14.0sec (1293K)
Runback	12.87sec	20.1sec	12.47sec
	27.86sec	28.6sec	27.46sec
	23.65sec	37.8sec	23.13sec
	37.86sec	38.6sec	37.46sec
3/4	42.31/41.99sec	176.4/ 176.4sec	48.92/49.80sec
1/2	115.57/115.35sec	176.4/ 176.4sec	140.47/ 140.60sec
	283.75sec	292.8sec	235.64 sec
	300.49sec	292.8sec	250.78sec
	654.77sec	678.1sec	568.65 sec
	654.77sec	678.1sec	568.65 sec
	900sec	900sec	900sec

2. CANDU

(CATHENA) :

Nodalization (RELAP/CANDU)

19.

[1]	RELAP5/MOD	3.3 Code M	anual, NUR	EG/CR-	5535 - Rev.	1, 2003		
[2]	, KA	ERI/ CR - 129	9/2002,				(Dev	elopment
	of Best Estim	ate Auditing	Code for	CANDU	Thermal-	Hydraulic Safet	y Analysis),	2002. 4
[3]	,		가			: RELAP/CAN	DU	CANDU
		35%	フト,	2003		,		
[4]	2, 3, 4			(FSAR)	,	, 2001. 4		
[5]		,						
[6]	Mallory I I	ond Ma	Donald T	E CA	TUENA	Idaalization	Dooumontot	ion of a

[6] Mallory, J. P. and MacDonald, T. E., CATHENA Idealization - Documentation of a CANDU 600-Reactor, Atomic Energy of Canada Limited, Research Company