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Abstract 
 

The local power density should be estimated accurately to prevent the fuel rod from being melted. 
The local power density at the hottest part of a hot fuel rod is more important information than the 
local power density at any other position in a reactor core, which is described by the power peaking 
factor. Therefore, in this work, the power peaking factor (Fq) that indicates the highest local power 
density in a reactor core is estimated by fuzzy neural networks using lots of measured signals of the 
reactor coolant system. The fuzzy neural network are trained using a training data set and are verified 
with another verification data set. The fuzzy neural networks are applied to the first cycle of the 
Yonggwang 3 nuclear power plant. The estimation accuracy of the power peaking factor is 1.02 % 
based on the relative 2σ  error by using the fuzzy neural networks without in-core neutron flux 

sensors signal input and 0.38% with in-core neutron flux sensors signals, which is accurate enough to 
be used in LPD protection and monitoring.  
 

1.  Introduction 
 

The calculation of the LPD and Departure from Nucleate Boiling Ratio (DNBR) is two major 
functions of CPC and COLSS that play each role in protection and monitoring systems. COLSS 
monitors the operating limits of a reactor core including LPD and DNBR and provides related 
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information to operators. COLSS is a program that runs in the Plant Monitoring System (PMS) 
computer that helps plant operators to monitor Limiting Conditions for Operation (LCOs) specified in 
the technical specifications. However, COLSS carries out only a monitoring function about an 
operating limit of a core and does not provide nuclear reactor protection functions. On the other hand, 
CPC which provides the nuclear reactor protection functions calculates faster than COLSS but 
generates more conservative values. Therefore, CPC provides lower DNBR and higher LPD values 
than COLSS. COLSS periodically adjusts CPC based on operating variables that are accurately 
calculated by COLSS including power level, reactor coolant system flow, etc. LPD should be 
estimated accurately to prevent the fuel rod from being melted. LPD at the hottest part of a hot fuel 
rod is more important than the local power density at any other position in a reactor core, which can 
be explained by the power peaking factor (Fq). The DNBR studies have been extensively performed 
(Han, 1999, In, 2002, Kim, 1997, Lee, 1998, Lee, 2002, Na, 1999 and Na, 2000). In the meanwhile, 
the LPD research almost has not been performed using artificial intelligence methods which have 
been extensively used in a lot of engineering problems. 

Therefore, the objective of this work is to predict the power peaking factor in a reactor core using 
the measured signals (in particular, including in-core neutron sensor signals) of the reactor coolant 
system by applying fuzzy neural networks according to operating conditions. The neural networks 
have extensively and successfully been applied to a variety of engineering problems. Fuzzy neural 
networks should be optimized to accomplish the good monitoring performance of the local power 
density. 

The used output and input data are the power peaking factor values (Fq) in a reactor core and a 
lot of operating conditions which are characterized by reactor power, core inlet temperature, 
pressurizer pressure, coolant flowrate of a reactor core, axial offset, in-core neutron sensor signals, 
and a variety of control rod positions. The Fq value in a reactor core is predicted by the developed 
fuzzy neural networks using these various operating condition data as the inputs to the fuzzy neural 
networks. The proposed power peaking factor estimation algorithm is verified by using the nuclear 
and thermal data acquired from numerical simulations of the Yonggwang 3 nuclear power plant. 
 

2.  Fuzzy Neural Networks 
 

In this work, the fuzzy neural networks that are most popular in the function approximation are 
used to predict the power peaking factor. A system that consists of a fuzzy inference system 
implemented in the framework of neural network is usually called an adaptive network-based fuzzy 
inference system (ANFIS) or fuzzy neural networks (Jang, 1993). The training of the fuzzy neural 
network is accomplished by a hybrid method combined with a backpropagation algorithm and a least-
squares algorithm. Also, a first-order Sugeno-Takagi type (Takagi and Sugeno, 1985) fuzzy inference 
system is used where the i -th rule can be described as follows: 

1 1If is is ,i m imx A AND AND x AL 1ˆthen is ( , , )i i
my f x xL , (1) 
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where jx  is the input variables to the fuzzy neural network ( j =1, 2, ..., m ; m  = number of input variables), 

ijA  the membership functions for the antecedent of the i -th rule and j -th input ( i = 1, 2, ..., n ; n  = the 

number of rules), and iŷ  the output of the i -th rule. 

In Eq. (1), the if part is fuzzy linguistic, while the then part is crisp. Usually ),,( 1 m
i xxf L  is a 

polynomial in the input variables but it can be any function as long as it can appropriately describe the 
output of the fuzzy inference system within the fuzzy region specified by the antecedent of the rule. In 
this work, the symmetric Gaussian membership function is used. The output of an arbitrary i -th rule, 

if , consists of the first-order polynomial of inputs as given in Eq. (2).  
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where 

ijq = the weighting value of the j -th input on the i -th rule output, 

ir  = the bias of the i -th output. 

The output of a fuzzy inference system with n  rules is weighted sum of the consequent of all 

the fuzzy rules. The estimated signal from the fuzzy inference system is given by: 
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The superscript i  indicates that the parameters are related to the i -th rule. Figure 1 shows a fuzzy 

neural network. 
The back-propagation algorithm is a general method for recursively training the fuzzy neural 

networks. It uses a gradient descent method. The gradient descent method tunes the antecedent 
parameters (center position and sharpness of membership functions) so that the predefined objective 
function E  is minimized. In order to train an antecedent parameter ija , the following iterative 

calculation is used: 
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rate for a parameter a . The gradient descent method is very stable when the learning rate is small. 

If we fix the antecedent parameters of the fuzzy inference system by the back-propagation 
algorithm, the resulting fuzzy neural networks is equivalent to a series of expansions of some basis 
functions. This basis function expansion is linear in its adjustable parameters. Therefore, we can use 
the least-squares method to determine the remaining parameters (consequent parameters ijq  and ir ). 

If a total number of N  input-output training data are given, from Eq. (3) the consequent parameters 

are chosen to minimize the following cost function: 
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y  is the output data vector, q  is the parameter vector, and the matrix W  includes the input data. 

The equation for minimizing the cost function is as follows: 
Wqy = . (6) 

The fuzzy neural network output is represented by the nmN )1( +× -dimensional matrix W  and 
the nm )1( + -dimensional parameter vector q . The parameter vector q  in Eq. (6) is solved by 

using the pseudo-inverse of the matrix W  as follows: 

( ) yWWWq TT 1−
= . (7) 

 
3.  Application to the Power Peaking Factor Estimation 

 
The proposed algorithm was applied to the first fuel cycle of the Yonggwang unit 3 PWR plant. 

The used data were obtained by running the MASTER (Cho, 1999) and COBRA (Wheeler, 1976) 
codes based on some assumptions. The data comprise a total of 21875 input-output data pairs 
( )ryxxx ,,,, 2321 L . The data are divided into both the training and verification data sets and also, 

these data sets are divided into two kinds of data with positive axial offset (AO) and negative AO. The 
training data set comprise one third of the acquired input-output data pairs and the verification data set 
comprises two thirds of the total data. 2321 ,,, xxx L  represent the reactor power, core inlet 

temperature, coolant pressure, mass flowrate, axial offset, 12 in-core neutron sensor signals, R1, R2, 
R3, R4, R5 and P control rod positions, and ry  is a power peaking factor (Fq) in the reactor core. 

The used in-core detector signals are ones located on the central part of the core (16, 20, 23, 26 
instrument number locations as indicated on Figure 2 and 3 axial positions). The R1, R2 and so on are 
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the names of the control rod groups. The ranges of the input signals that are used for training, in this 
work, are described in Table 1. The fuzzy neural networks are trained for both data sets divided into 
two positive (relatively high power at a top part of a reactor core) and negative AOs, which results in 
smaller errors compared with that of only one summed data set. 

The number of rules of fuzzy neural networks is 4 for negative AO cases and 5 for positive AO 
cases. The antecedent parameters such as membership function parameters are optimized by the back-
propagation method and the consequent parameters ijq  and r  are optimized by the least-squares 

method. 
Figure 3 shows the power peaking factors for ~7300 verification cases and their estimation error 

histogram (without and with in-core detector signals) for negative AO values. If we do not use the in-
core neutron flux sensor signals, the relative two-sigma error is 0.99 percent relatively based on the 
difference between the maximum and minimum values of the used data and its maximum error is 
26.78 percent (see Table 2). The relative two-sigma error was calculated based on the normal 
distribution since the error histograms resemble the normal distribution (refer to Figure 3 (b) and (c)). 
If we use the in-core neutron flux sensor signals, the relative two-sigma error is 0.35 percent and its 
maximum error is 5.44 percent. Figure 4 shows the power peaking factors and their estimation error 
histogram (without and with in-core detector signals) for positive AO values. If we do not use the in-
core neutron flux sensor signals, the relative two-sigma error is 2.45 percent and its maximum error is 
17.41 percent. If we use the in-core neutron flux sensor signals, the relative two-sigma error is 0.97 
percent and its maximum error is 6.47 percent. In case we consider the relative two-sigma error for 
negative and positive AOs data together (see Figure 5 and Table 2), the relative two-sigma error is 
1.02 percent without in-core sensor signals and 0.38 percent with in-core sensor signals. It is known 
that the use of SPND signals reduces the estimation error over about two times compared to that not 
using the SPND signals. 

It is important to verify the fuzzy neural networks for verification data that had not been used in 
the training stage. It is known that the two-sigma error calculated by the fuzzy neural networks for the 
verification data is similar to the two-sigma error for the training data (see Table 2). Therefore, if the 
fuzzy neural networks are trained first using data at a variety of operating conditions, they can 
accurately estimate power peaking factors for any other operating data.  
 

4.  Concluding Remarks 
 

In this work, fuzzy neural networks has been developed and applied to the estimation of the 
power peaking factor in the reactor core. The fuzzy neural networks are trained by using the data set 
prepared for training (training data) and verified by using another data set different (independent) 
from the training data. And also, two fuzzy neural networks are trained for both data sets divided into 
two positive and negative Aos, respectively. The developed fuzzy neural networks were applied to the 
first fuel cycle of the Yonggwang unit 3 PWR plant. The relative two-sigma error of the estimated 
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power peaking factor is 0.38 percent when in-core neutron flux detector signals are used and 1.02 
percent when they are not used. The use of SPND signals as input signals to the fuzzy neural networks 
reduces the estimation error over about two times compared to that not using the SPND signals. In 
summary, it is known that the fuzzy neural network is sufficiently accurate to be used in a power 
peaking factor monitoring. 
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Table 1. Input and output signal ranges. 

Input signals Nominal values Ranges 

Reactor power (%) 100% 80 ~ 110 

Inlet temperature (oC) 295.8 290.5 ~ 301.7 

Pressure (bar) 155.17 131.0 ~ 160.0 

Mass flowrate (kg/m2-sec) 3565.0 2994.6 ~ 4135.4 

Axial offset - -0.645 ~ 0.536 

Simulated in-core detector signals
(12 different positions) 

- 8.0 ~ 342.0 

R1 control rod positions (cm) - 0 ~ 381 

R2 control rod positions (cm) - 0 ~ 381 

R3 control rod positions (cm) - 0 ~ 381 

R4 control rod positions (cm) - 0 ~ 381 

R5 control rod positions (cm) - 0 ~ 381 

R12 control rod positions (cm) - 0 ~ 381 

P control rod positions (cm) - 0 ~ 381 
Output signal Nominal value Range 

Fq - 1.928 ~ 4.511 
 

Table 2. Results of the fuzzy-neural networks. 

Training data Verification data  

Relative 
maximum 
error (%) 

Relative 2σ  
error (%) 1) 

Relative 
maximum 
error (%) 

Relative 2σ  
error (%) 

Negative axial 
offset 6.99 0.73 26.78 0.99 

Positive axial 
offset 6.46 2.33 17.41 2.45 

Without 
in-core 
sensor 
signals 

Total 6.99 0.87 26.78 1.02 

Negative axial 
offset 0.71 0.28 5.44 0.35 

Positive axial 
offset 2.80 0.91 6.47 0.97 

With 
in-core 
sensor 
signals 

Total 1.19 0.34 5.44 0.38 

1) Relative values based on the difference between the maximum value and the minimum 
value of the used data 
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Fig. 1. Fuzzy neural networks. 
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Fig 2. Fixed rhodium in-core detector location of YGN-3. 
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(a) Actual Fq histogram 
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(b) Error histogram between actual Fq and estimated Fq (without SPND signals) 
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(c) Error histogram between actual Fq and estimated Fq (with SPND signals) 

Fig. 3. Estimation performance of fuzzy neural networks for negative axial offset data. 
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(a) Actual Fq histogram 
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(b) Error histogram between actual Fq and estimated Fq (without SPND signals) 
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(c) Error histogram between actual Fq and estimated Fq (with SPND signals) 

Fig. 4. Estimation performance of fuzzy neural networks for positive axial offset data. 
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(a) Actual Fq histogram 
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(b) Error histogram between actual Fq and estimated Fq (without SPND signals) 
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(c) Error histogram between actual Fq and estimated Fq (with SPND signals) 

Fig. 5. Estimation performance of fuzzy neural networks (including positive and negative axial offset 
data). 
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