SMART-P

Analysis of Shielding Effects of Side Shield Screens Using Radiation Flux at the Reactor Pressure Vessel of the SMART-P

Abstract

The SMART-P is a small-sized advanced integral PWR that produces a thermal energy of 65.5 MWt under full power operating conditions. Under a conceptual design stage of SMART-P, it was considered to change the structure of side shield screens, which was to reduce from 8 screens to 7 screens instead of increasing the thickness of 4 screens by 1cm. Therefore, it was performed the shielding analysis to verify the shielding effect of side shield screens. The two-dimensional discrete ordinates transport code, DORT, was used to evaluate the shielding designs for the near-core region of the SMART-P for the R-Z geometry model. According to the results of radiation shielding analysis, it was shown that the radiation shielding effects by 7 screens was improved as compared with those by 8 screens.

1.

330MWt 65.5MWt

SMART ¹	가	
SMART-Pフト		. SMART-P

2003

	가					
1(A)	8	3				
		1(B)	가 7			가
			4	가 4cm	5cm	1c m
가	· ,	SMART-P	1(A)	1(B)		가
			PWR			
		2		DORT ²		
1(A)	1(B)	가	SMART-P			
		R-Z	, DO ⁻	TR		
	가	- ,				
	SMART	-P				

2. 가

SMART-P 65.5MW t GIP³ 2 가 DORT² DLC-185/BUGLE-964 DORT GIP . DLC-185/BUGLE-96 1.0x10⁻² eV 1.492x10⁷ eV 67 47 1.0x10⁷ eV 1.0x10⁴ eV 20 . MASTER⁵ 가 3 . 1 68x40 DORT cubic spline DORT (fixed source term)

> = () / ()= 65.5[MW] / [π (67.90 cm)²×(80 cm)] = $\frac{65.5 \times 10^{6}$ [W] × 3.1×10¹⁰[fissions/W·s]}{1.16 \times 10^{6}[cm³] = 1.75×10¹²[fissions/cm³·s]

, Watt			7			BUGLE-96
	2					
DORT		P_5		(scattering)	S ₈	(Angular
Quadrature)	2		R-Z		. S ₈	
6						

3.

65.5MW t		SMAR	T-P 2	R-Z		DORT	-
	30%		2	5			2
3							
		,		. 2		7	
В		가		8			А
6 cm 26 c	m	71			Р		A
		∠ L	가		D		
		가			3	,	В
			А			,	
		70%	80%			,	
4	20% 50% A	В					
		B 40cm					А
							40%
	,	400/	0.07.4	0^9 n (ar^2 n	l7cm		В
	A 19cm	40%	2.3/XI B			А	40%
2.17x10 ⁸	n/cm ² s						,
		- ,					
				Bフト	- A		
5	А	В	•				
			В		가	A	
	<i>.</i>					-	
B	(n,γ)	2			,	2	
D		48	S ₈ qu	uadrature s	set		
SMART-P							
4.							
		SM	IART-P				
	2			DORT			
7						8	
(1				Δ
	가 1cm 가		I				7

MCNP

- Moon H. Chang, et al., "Advanced Design Features Adopted in SMART," Proceeding of International Seminar of Status and Prospects for Small and Medium Sized Reactors, May 27-31, Cairo, Egypt, (2001).
- 2. RSICC Computer Code Collection-DOORS3.2, CCC-650, ORNL, April, 1998.
- 3. W. A. Rhoades, "The GIP for preparation of group-organized cross-section libraries," ORNL, April 13, 1978.
- J. E. White et al., "DLC-185/BUGLE-96: Coupled 47 Neutron, 20 Gamma-Ray Group Cross-Section Library Derived from ENDF/B-VI for LWR Shielding and Vessel Dosimetry Application," DLC-185, Oak Ridge National Laboratory, 1996.
- 5. , "MASTER 2.1 User's Manual, " KAERI/UM-06/2000, September 2000.
- J. P. Jenal et al, "The Generation of a Computer Library for Discrete Ordinates Quadrature Sets," ORNL TM-6023, October 1977.
- 7. J. F. Briesmeister, "MCNP-A General Monte Carlo N-Particle Transport Code," Version 4C3, Ch.3 and App. H, LA-13709-M, LANL, March 2001.

		1.						
Radial Power Distribution						Axial Power Distribution		
Mesh No.	Radial Distance [cm]	Normalized Power	Mesh No.	Radial Distance [cm]	Normalized Power	Mesh No.	Axial Distance [cm]	Normalized Power
1	0.5	0.9291	41	40.5	1.0437	1	0.5	1.2887
2	1.5	0.9301	42	41.5	1.0279	2	1.5	1.2800
3	2.5	0.9308	43	42.5	1.0449	3	2.5	1.2700
4	3.5	0.9311	44	43.5	1.0909	4	3.5	1.2587
5	4.5	0.9308	45	44.5	1.0555	5	4.5	1.2463
6	5.5	0.9298	46	45.5	1.0275	6	5.5	1.2325
7	6.5	0.9280	47	46.5	1.0252	7	6.5	1.2176
8	7.5	0.9252	48	47.5	1.0391	8	7.5	1.2014
9	8.5	0.9218	49	48.5	1.0470	9	8.5	1.1840
10	9.5	0.9182	50	49.5	1.0213	10	9.5	1.1654
11	10.5	0.9149	51	50.5	0.9829	11	10.5	1.1456
12	11.5	0.9123	52	51.5	0.9808	12	11.5	1.1247
13	12.5	0.9109	53	52.5	0.9934	13	12.5	1.1025
14	13.5	0.9106	54	53.5	1.0121	14	13.5	1.0792
15	14.5	0.9104	55	54.5	1.0299	15	14.5	1.0549
16	15.5	0.9103	56	55.5	1.0201	16	15.5	1.0295
17	16.5	0.9108	57	56.5	0.9729	17	16.5	1.0032
18	17.5	0.9125	58	57.5	1.0010	18	17.5	0.9760
19	18.5	0.9158	59	58.5	0.9661	19	18.5	0.9480
20	19.5	0.9209	60	59.5	0.9713	20	19.5	0.9192
21	20.5	0.9270	61	60.5	0.9784	21	20.5	0.8897
22	21.5	0.9327	62	61.5	0.9194	22	21.5	0.8597
23	22.5	0.9412	63	62.5	0.8763	23	22.5	0.8296
24	23.5	0.9611	64	63.5	0.8654	24	23.5	0.7998
25	24.5	1.0011	65	64.5	0.8543	25	24.5	0.7705
26	25.5	1.0539	66	65.5	0.8271	26	25.5	0.7422
27	26.5	1.0745	67	66.5	0.7678	27	26.5	0.7152
28	27.5	1.0699	68	67.5	0.6603	28	27.5	0.6898
29	28.5	1.0615				29	28.5	0.6659
30	29.5	1.0625				30	29.5	0.6431
31	30.5	1.0694				31	30.5	0.6207
32	31.5	1.0756				32	31.5	0.5983
33	32.5	1.0688				33	32.5	0.5752
34	33.5	1.0413				34	33.5	0.5510
35	34.5	1.0183				35	34.5	0.5258
36	35.5	1.0330				36	35.5	0.5000
37	36.5	1.0886				37	36.5	0.4737
38	37.5	1.0815				38	37.5	0.4471
39	38.5	1.0638				39	38.5	0.4205
40	39.5	1.0611				40	39.5	0.3942

	Σ. υ				
Energy Group	Upper Energy [eV]	Fission Spectrum [n/cm ³ s]	Energy Group	Upper Energy [eV]	Fission Spectrum [n/cm ³ s]
1	1 7222E+7	1 43040108	25	2.0721515	1 51070111
ו ר	1.7332E+7	6 52540+08	25	2.9721E+5	7 00920110
2	1.41916+7	0.52540+00	20	1.0310E+5	7.99020+10
3	1.2214E+7	4.14610+09	27	1.1109E+5	3.92666+10
4	1.0000E+7	1.01//e+10	28	6.7379E+4	1.8985e+10
5	8.6071E+6	2.3680e+10	29	4.0868E+4	5.3792e+09
6	7.4082E+6	6.9792e+10	30	3.1828E+4	3.0795e+09
7	6.0653E+6	1.3711e+11	31	2.6058E+4	9.3841e+08
8	4.9659E+6	3.6852e+11	32	2.4176E+4	1.1000e+09
9	3.6788E+6	3.5139e+11	33	2.1875E+4	2.9324e+09
10	3.0119E+6	2.0023e+11	34	1.5034E+4	2.6336e+09
11	2.7253E+6	2.1170e+11	35	7.1071E+3	8.6031e+08
12	2.4660E+6	9.0721e+10	36	3.3546E+3	2.7935e+08
13	2.3653E+6	1.8236e+10	37	1.5846E+3	1.1380e+08
14	2.3457E+6	1.1029e+11	38	4.5400E+2	1.3928e+07
15	2.2313E+6	3.3418e+11	39	2.1445E+2	4.5221e+06
16	1.9205E+6	3.2981e+11	40	1.0130E+2	1.6889e+06
17	1.6530E+6	4.1597e+11	41	3.7266E+1	4.1071e+05
18	1.3534E+6	5.4334e+11	42	1.0677E+1	5.0242e+04
19	1.0026E+6	2.9895e+11	43	5.0435E+0	1.8764e+04
20	8.2085E+5	1.3032e+11	44	1.8554E+0	3.6396e+03
21	7.4274E+5	2.2457e+11	45	8.7643E-1	1.1816e+03
22	6.0810E+5	1.8094e+11	46	4.1399E-1	5.0058e+02
23	4.9787E+5	2.0322e+11	47	1.0000E-1	6.7432e+01
24	3.6883E+5	1.0590e+11		1.0000E-5*	

2. DORT

* Lower limit of 47 Group

3. SMART-P

