2003 추계학술발표회 논문집 한국원자력학회

원자로 육안검사용 수중로봇의 위치추적

Tracking the Position of the Underwater Robot for Nuclear Reactor Inspection

조 재 완, 김 창 회, 서 용 칠, 최 영 수, 김 승 호 한국원자력연구소 대전광역시 유성구 덕진동 150

요 약

원자로 용기 내부를 육안 검사중인 수중 로봇의 위치를 추적하기 위해서 배경성분인 원자로 냉각수의 짙은 남색과 수중로봇 본체의 노란색 성분의 색상정보를 이용하였다. 핵연료 및 원자로 용기를 취급하는 크레인 구조물에 칼라 CCD 카메라를 설치하여 수중 로봇의 동작상태 감시 및 위치를 추적하였다. 영광 5호기 원자로에서 실험한 결과 cold leg/hot leg이 위치한 수심 10m 깊이에 위치한 수중로봇의 위치도 정확하게 추적할 수 있었다.

Abstract

The tracking procedure of the underwater mobile robot moving and submerging ahead to nuclear reactor vessel for visual inspection, which is required to find the foreign objects such as loose parts, is described. The yellowish underwater robot body tends to present a big contrast to boron solute cold water of nuclear reactor vessel, tinged with indigo by the Cerenkov effect. In this paper, we have found and tracked the positions of underwater mobile robot using the two color information, yellow and indigo. From the horizontal and vertical profiles analysis of the color image, the blue, green, and the gray component have the inferior signal-to-noise characteristics compared to the red component.

The center coordinates extraction procedures areas follows. The first step is to segment the underwater robot body to cold water with indigo background. From the RGB color components of the entire monitoring image taken with the color CCD camera, we have selected the red color component. In the selected red image, we extracted the positions of the underwater mobile robot using the following process sequences; binarization, labelling, and centroid extraction techniques. In the experiment carried out at the Youngkwang unit 5 nuclear reactor vessel, we have tracked the center positions of the underwater robot submerged near the cold leg and the hot leg way, which is fathomed to 10m deep in depth When the position of the robot vehicle fluctuates between the previous and the current image frame due to the flickering noise and light source, installed temporally in the bottom of the reactor vessel, we adaptively adjusted the ROI window. Adding the ROI windows of the previous frame to the current frame, and then setting up the ROI window of the next image frame, we can robustly track the positions of the underwater robot and control the target position's divergence. From these facts, we can conclude that using the red component from color camera is more efficient tracking method than processing the black and white image from the monochrome CCD camera.

1. 서 론

국내에 가동중인 원자로는 가압형 경수로 및 중수로의 두 종류가 있다. 가압형 경수로의 경우 원자로 압력용기의 상부 및 하부구조물 등에서 이탈되는 부품(Loose Part) 등이 원 자로 냉각 계통(Cold Leg)을 거쳐 핵연료가 장전되어 있는 원자로로 유입될 가능성이 있 다. 원자로에서는 핵연료가 연소하면서 발생되는 열에 의해 290~330℃의 온도 분포를 갖는 고온 고압의 1차 냉각수유동이 Hot Leg을 통해 증기발생기로 전달된다. 증기발생 기는 전열관 세관내부를 흐르는 1차 냉각수와 그 외부를 지나는 2차 냉각수에 의하여 열 교환이 이루어진다. 열교환에 따른 증기를 이용하여 터빈을 돌려 전기를 생성한다. 증기 발생기의 열교환을 통해 열에너지를 잃은 1차 냉각수는 다시 Cold Leg으로 유입되어 원 자로를 거치는 순환과정을 되풀이 한다. 따라서, 원자로 구조물에서 이탈된 부품은 1차 냉각수의 유동에 따라 원자로 냉각 계통을 순환하면서 원자로 내벽이나 핵연료를 지지하 는 CSB(Core Support Barrel) 외벽에 손상을 가할 수 있다. 이러한 손상 유무를 육안 검사하기 위해 18개월 주기로 수행되는 정기 검사 시에 원자로 내벽 및 CSB 외벽의 이 상 상태를 육안 검사하도록 되어 있다. 원자력 연구소에서는 원자로의 건전성을 확보하 기 위해 원자로 압력용기내 이물질 탐지 및 회수를 위한 수중로봇 시스템을 개발하고 있 일반적으로 해양 탐사를 위한 수중로봇의 본체는 배경이 되는 해양의 남색과 대 다.[1] 비되는 노란색 계통의 색상으로 도색된다. 이는 푸른 바다에서 색상이 뚜렷이 대비되는 노란색의 수중로봇의 위치를 보다 용이하게 찾기 위함이다. 경수로형의 원자로의 경우 핵연료에서 방출되는 빛의 속도보다 빠른 입자와 냉각수인 물과의 충돌에 형광이 발생한 다. 이를 체렌코프 현상이라고 하며 가동 년수가 길수록 냉각수로 채워진 원자로 용기는 체렌코프 현상에 의해 점점 더 짙은 남색을 띠게 된다. 매회 실시되는 원자력 발전소 정 기점검 기간에 원자로 용기의 이물질 제거 및 건전성 평가를 위해 본 연구에서 개발중인 수중로봇의 본체도 원자로 용기에 담겨있는 냉각수의 짙은 남색과 대비되는 노란색으로 도색하였다.

본 연구에서는 원자로 용기 내부를 육안 검사중인 수중 로봇의 위치를 추적하기 위해 서 배경성분인 원자로 냉각수의 짙은 남색과 수중로봇 본체의 노란색 성분의 색상정보를 이용하였다. 핵연료 및 원자로 압력용기를 취급하는 크레인 구조물에 칼라 CCD 카메라 를 설치하여 수중 로봇의 동작상태 감시 및 위치를 추적하였다. 영광 5호기 원자로에서 실험한 결과 cold leg/hot leg이 위치한 수심 10m 정도 깊이에 위치한 수중로봇의 위치 도 정확하게 찾아낼 수 있었다.

2. 원자로 육안 검사용 수중 로봇

원자로 용기의 재질은 탄소강이다. 냉각수에 의한 부식을 방지하기 위해 클래딩으로 탄 소강을 감싸고 있다. 그림 1에 원자로 내부 육안 관측을 위한 수중로봇의 시스템 구성도 를 보이고 있다. 수중 로봇 시스템은 수중 로봇 몸체와 제어 및 모니터링 콘솔로 구성되 어 있다.

그림 1. 수중로봇 시스템 구성도

수중 로봇은 원자로 격납 용기내의 관측 작업을 수행하기 위해 카메라 및 센서들을 장착 하고 있다. 로봇 조작자에게 원자로내의 관측 영상 및 위치정보를 제공한다. 그림 2에 나타낸 바와 같이 수중로봇 몸체는 부력부와 추진체로 구성되어 있어 잠수, 부상, 전진, 후진 및 회전이 가능하다. 고성능의 관측 카메라, 조명, 초음파 센서, 압력센서가 장착되 어 영상 관측 및 위치추적이 가능하다. 그림 3에 수중로봇의 실제 모습을 나타내고 있다.

그림 2. 수중 로봇의 본체

그림 3. 수중 로봇의 실제 모습

원자로 육안 검사용 수중 로봇의 제원을 표 1에 나타내고 있다.

구 분	제 원
크기	$26''L \times 14''W \times 12''H$
중량 (대기중)	31 pounds
유효 하중	7 pounds
작동 깊이	150 ft
시험 깊이	200 ft
동작 온도 범위	32°- 104°F
추진 하중	12 pounds
CCD 카메라	1/4" IT CCD
렌즈	18X1 전동줌 (4.1 ~ 73.8mm)
관측영상신호	NTSC

표 1. 수중로봇 몸체 규격

3. 수중 로봇의 위치 추출

가동 년수가 길수록 냉각수로 채워진 원자로 용기는 체렌코프 현상에 의해 점점 더 짙은 남색을 띠게 된다. 그림 4에 영광 5호기 원자로 용기에 위치한 CSB 외벽 검사를 위해 이동중인 수중로봇을 보이고 있다. 그림 4에서 원자로 용기는 부패를 방지하기 위해 봉소가 용해된 냉각수로 채워져 있다. 그림 4에서 우측의 원형의 구조물이 CSB 이다. 냉 각수는 푸른 빛을 띠고 있으며 수중 로봇은 노란색으로 도색되어 있음을 알 수 있다. 그 림 4의 좌측 상단의 붉은색으로 보이는 것이 핵연료 장전, 원자로 상부 하부 구조물의 설 치, 해체, 이동을 위해 설치되어 있는 크레인이다. 이동 로봇의 주행을 감시하기 위해 크 레인에 임시로 설치한 CCD 카메라로 획득한 영상이 그림 4이다. 그림 4의 칼라영상을 R.G.B 성분으로 분리한 것을 그림 5에 나타내고 있다. 그림 5의 상단좌측이 칼라영상의 R 성분이고 상단 우측이 G, 하단 좌측이 B성분이다. 하단 우측은 RGB 성분을 합성한 흑백영상을 나타내고 있다. 그림 5의 하단 좌측의 B성분 영상에서는 배경이 되는 냉각수 의 푸른색 때문에 노란색으로 도색된 수중로봇의 위치를 찾기가 용이하지 않음을 알 수 있다. 그림 6,7에 그림 4의 수중로봇 위치에서의 수평, 수직방향 그레이레벨 분포를 나타 내고 있다. 그림 6, 7에서 R성분과 B성분의 그레이레벨 분포를 비교해보면 수중로봇이 위치한 X축(1~64) 좌표와 Y축좌표(180~215) 영역에서 R성분은 배경과 수중로봇이 명확 히 구분되는데 비해 B성분에서는 수중로봇이 배경에 묻혀버림을 알 수 있다. 그림 5의

그림 4. CSB 외벽검사중인 수중 로봇

그림 5. RGB 분리영상

그림 6. X 축 프로파일

그림 7. Y축 그레이 레벨 분포

Gray 영상의 X,Y축 그레이레벨 분포는 R,G,B 성분의 식(1) 과 같은 NTSC 표준에 의해 합성되어진 것이므로 R성분에 비해 S/N 특성이 나쁨을 알 수 있다. [2]

Gray = 0.299R + 0.587G + 0.114B ---(1)

4. 실험 및 결과

영광 5호기 원자로에 위치한 핵연료 및 원자로 압력용기를 취급하는 크레인 구조물에 Sony DCR-PC5 칼라 CCD카메라를 설치하여 수중 로봇의 이동 영상을 획득하였다. 이를 그림 8에 나타내었다. DCR-PC5는 1/4" CCD 센서에 10X 줌렌즈를 장착한 카메라이다. 영상의 profile, projection, histogram 분석을 통해 배경과 원형패턴을 분리시키기 위한 최적의 threshold를 결정하고 2진화처리를 수행하였다. 이를 그림9에 나타내었다. 그림 9 에서 R성분은 배경과 수중로봇이 분리되어있고 B 성분 영상에서는 배경에 수중로봇이 묻혀 있음을 나타내고 있다.

그림 8. 이동중인 수중로봇

그림 9. 2진화된 수중로봇 영상(R, G, B, Gray 성분 및 Projection 특성)

배경과 분리된 수중로봇을 라벨링 처리하고 각각의 라벨에 대해 size filter를 적용하여 잡음과 배경을 제거하였다. 라벨 영상에 대해 무게중심을 구하여 수중 로봇의 중심점으 로 취하였다.[3] 그림 10, 11 에 그 결과를 나타내었다. R 성분 영상에서 배경과 로봇을 분리하기 위한 문턱치는 128 로 하였으며 labelling 처리 후 각 label 의 크기를 계산하여 수중 로봇의 크기와 비슷한 200~400 개의 픽셀 개수 범위에 드는 라벨의 무게 중심을 중 심점으로 취하였다. 그림 10의 상단에 나타낸 숫자는 프레임의 수를 나타낸다. 그림 10, 11의 실험 결과로 부터 원자로 내벽의 탐상을 위한 수중 로봇의 몸체를 체렌코프 현상 에 의해 짙은 남색을 띠는 원자로 배경과 구분되는 노란색 계통으로 도색함으로써 수중 로봇의 추적을 보다 효율적으로 할 수 있음을 알 수 있다. 그림 12는 CSB 내벽을 검사 하기 위해 이동중인 수중로봇의 추적궤적을 나타내었다. 그림 12에서 X축은 프레임 수 를 나타내고 Y축은 수중로봇의 위치(X,Y좌표)를 나타낸다. 수중로봇의 위치궤적에서 보이는 spike 는 원자로내부에 다른 검사를 위해 간이로 설치한 조명에 의한 잡음, 양자 화 잡음, flickering 잡음 등에 의한 수중로봇의 위치를 놓치는 경우를 나타내고 있다. 이 러한 잡음에 대한 추적의 강건성을 높이기 위해 적응적인 추적창 기법을 도입하였다.

그림 10. 원자로에 입수중인 수중로봇의 추적

그림 11. CSB 에 접근중인 수중로봇의 추적 영상

그림 12 . CSB 외벽 검사를 위해 이동중인 수중로봇의 추적궤적

5. 결론 및 추후 연구

본 연구에서는 원자로 용기 내부를 육안 검사중인 수중 로봇의 위치를 추적하기 위해 서 배경성분인 원자로 냉각수의 짙은 남색과 수중로봇 본체의 노란색 성분의 색상정보를 이용하였다. 핵연료 및 원자로 용기를 취급하는 크레인 구조물에 설치된 칼라 CCD 카메 라로부터 획득된 원자로 용기의 전체 영상중에서 상대적으로 S/N 특성이 우수한 R성분 의 영상을 처리하여 수중 로봇의 위치를 추출하였다. 영광 5호기에서 실험한 결과 cold leg/hot leg이 위치한 수심 10m 깊이까지 잠수한 수중로봇의 위치도 정확하게 찾아낼 수 있었다. 체렌코프 현상에 의해 짙은 남색을 띠게 되는 원자로 냉각수와 대비되는 노란 색을 수중 로봇 몸체의 바탕색으로 취하면 색상정보를 이용하는 것이 흑백영상을 이용하 는 것보다 영상 처리가 훨씬 효율적임을 알 수 있었다.

후기

본 연구는 과학기술부의 원자력연구개발사업의 일환으로 수행되었음.

참고문헌

- [1] 김승호 외, "원자력발전소 가압기 유지보수 로봇 개발", KAERI/ RR-1953/98, 한국 원자력연구소
- [2] Randy Crane, A Simplified Approach to Image Processing, Prentice-Hall, 1997
- [3] Dwayne Phillips, Image Processing in C, Prentice-Hall