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Abstract 

The wavelet transform decomposes a signal into time- and frequency-domain signals and it is well 
known that a noise-corrupted signal could be reconstructed or estimated when a proper denoising 
method is involved in the wavelet transform. Among the wavelet denoising methods proposed up to 
now, the wavelets by Mallat and Zhong can reconstruct best the pure transient signal from a highly 
corrupted signal. But there has been no systematic way of discriminating the original signal from the 
noise in a dyadic wavelet transform. In this paper, a systematic method is proposed for noise 
discrimination, which could be implemented easily into a digital system. For demonstrating the 
potential role of the wavelet denoising method in the nuclear field, this method is applied to the steam 
or feedwater flow rate estimation of the secondary loop. And the configuration of the S/G water level 
control system is proposed for incorporating the wavelet denoising method in estimating the flow rate 
value at low operating powers. 

1. Introduction 

The wavelet transform maps the time domain signal into the frequency and time domains 
as the windowed or short time Fourier transform does [1]. The windowed FT has a constant 
window width across both the time and frequency domains. On the contrary, the widths of the 
wavelets in the wavelet transform are varied according to the scales. As the scale goes to the 
high frequency range, the width of the wavelet is reduced over the time domain and also 
increases over the frequency domain so that the short time and highly oscillating signals can 
be isolated. When the scale corresponds to the low frequency range in which the signals 
usually have a long period of time, the width of the wavelet is enlarged over the time domain 



and correspondingly, is reduced in the frequency domain [2].  
More interestingly, some types of wavelets have the capability of showing that the 

maximum values of the decomposed signals by the wavelet transform represent the sharp 
variation points of the signal which are called the singularities and the variations of these 
maximum values across the scale characterize the type of the singularity [3].  

By the use of these wavelets, the variations affected by noise can be differentiated from 
those due to the signal and the noise signals can be removed significantly when the signal is 
reconstructed from the selected maximum values of the wavelet transform due to the signal. 
This method can be applied to the noise removal or reduction of signals related to nuclear 
power plant operations and, in this paper, it is specifically incorporated into the water level 
controller for the on-line estimation of the true flow rate under a very high noise environment 
where the noise signals are twice the magnitude of the original signal at low operating powers. 

2. Wavelet Transform and Noise Reduction 

Mallat and Zhong [3] showed that some types of wavelets have a property that the 
maximum values of the decomposed signals along the scale represent the sharp variation 
points of the original signal. Using this wavelet, the signal that approximates the original 
signal very closely can be recovered from the noise-corrupted signal. The wavelet developed 
by Mallat and Zhong is the first derivative of some kind of smoothing function and it is not 
orthogonal. Orthogonal wavelets having the properties described above were proposed by 
Cvetković and Vetterli [4]. In both wavelets, the decomposition and the synthesis of the 
signals are performed by the use of the non-subsampled filter banks, which have an 
advantage of shift invariance compared to the critically sampled octave band filter banks [5]. 
In this section, the wavelet transform by Mallat and Zhong is described briefly because this 
wavelet is used in the noise reduction procedures in this paper. 

The Hilbert space L2(R) is defined as the set of square-integrable functions such that 

   ∫
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The Fourier transform of f(x) is denoted by )(f̂ ω . The convolution of the two functions 
f(x) ∈ L2(R) and g(x) ∈ L2(R) is represented as 
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and the dilation of a function ψ(x) by the scale s (s>0) is defined as 
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In this paper, the scale s is restricted to the dyadic scale, i.e., s = 2j (j ∈ Z). The wavelet 
transform of f(x) ∈ L2(R) at the scale 2j and at the position x is defined as 

)x(f)x(fW jj 22
ψ∗= ,            (2) 

where j ∈ Z and j2
ψ  is the dilation of ψ by the scale 2j as in Eq.(1). In Eq.(2), the function 

ψ(x) is called the wavelet. The reconstruction or synthesis of f(x) from the wavelet transform 
of Eq.(2) is defined as 
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where χ(x) is called the reconstruction or synthesis wavelet. 
For Eq.(2), the resolution of the dyadic scale 2j can be from j = -∞ to ∞. In reality, however, 

this could never be achieved because we have to treat the finite length of the signal samples, 
i.e., 

D = {d0, d1,⋅⋅⋅⋅, dN-1},          (4) 
where N is the number of data samples and is usually the power of 2. We set the finest 

scale by s = 1 and set the coarsest scale by s = 2J with J = log2(N). 
At this time, we need to introduce a smoothing function φ(x) with the frequency response 

function such as 
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so that the smoothing operation S at the scale of 2J is defined as  
)x(f)x(fS JJ 22

φ∗= .          (6) 
The smoothing function φ in Eq.(5), the wavelet ψ in Eq.(2), and the reconstruction 

wavelet χ in Eq.(3) are obtained from the infinitely product of an FIR (Finite Impulse 
Response) filter and the frequency response functions, respectively [3] such that 

∏
∞

=

−−=
1p

pwi )2(He)(ˆ ωωφ ω ,      (7a) 

)(ˆ)(Ge)2(ˆ wi ωφωωψ ω−= ,      (7b) 
)(ˆ)(Ke)2(ˆ wi ωφωωχ ω−= ,      (7c) 

where w is a shift constant. The FIR filters H(ω), G(ω), and K(ω) are all 2π periodic 
functions and |H(0)| = 1. By manipulating Eq.(5) and Eqs.(7), the necessary and sufficient 
condition for the perfect reconstruction can be obtained by 

   1)(K)(G)(H 2 =+ ωωω . 
For the discrete-time signal D in Eq.(4), it can be found that there exists a function f(x) ∈ 

L2(R) such that S1f(k) = dk, for k = 0, 1,⋅⋅⋅⋅, N-1. Then, the set of decomposed signals through 
the wavelet transform operation W are generated by 

)}k(fS),k(fW,),k(fW),k(fW{f JJ21 2222
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The fact that ψ(x) is the first derivative of a smoothing function implies that )(ˆ ωψ  must 
have a zero of the multiplicity one at ω = 0 [4]. By the proper choice of H(ω), a wavelet 
having a single zero at ω = 0 can be designed to be regular and to have a compact support.[3].  

The modulus maxima are the values of the decomposed signals at the points determined 
from the fact that the absolute value of the wavelet transform at a point k is larger than that of 
the adjacent points along the position with respect to a scale 2j. And the modulus maxima 
operator M is defined by 

}J,,1j|,)1k(fW||)k(fW||,)1k(fW||)k(fW:|)k,fW{(M jjjjj 22222
L=+≥−≥= . (9) 

Based on the fact that the modulus maxima in Eq.(9) obtained by the use of Eqs.(7) 
represent the singularities or the sharp variation points of the signal, one more important and 



interesting fact is to be described in order to distinguish the signal from the noise. The 
absolute value of each decomposed signal in Eq.(8), which also includes the modulus 
maxima of Eq.(9), can be bounded by 

α)2(K)x(fW j
2 j ≤ , for ∀j and x ∈ ]a, b[.     (10) 

In Eq.(10), K is a positive constant and α is called the Lipschitz exponent defined such that, 
for (x1,x2) ∈ ]a, b[2, there exists K>0 such that |f(x1) – f(x2)| ≤ K|x1 – x2|α. If α > 0, which 
usually represents the inflection point of the signal, the modulus maxima increases as the 
dyadic scale increases (j → J). On the contrary, when α < 0, which corresponds to the effect 
of the spike-like noise signal, the modulus maxima increase as the scale goes to the finest 
scale (j → 1).  

This characterization provides a possible way for identifying whether the modulus maxima 
across the scale at some points are resulted from the noise or the variation of the signal. When 
the identification process of all the modulus maxima is finished, the modulus maxima from 
the noise are eliminated leaving only those from the signal. 

After removing the noise-induced modulus maxima, the wavelet transform is reconstructed 
from the remaining modulus maxima over the scale and the decomposed signals by the 
smoothing operation as in Eq.(6). This reconstruction procedure is performed through the 
alternating projections of three operators such as 

YV PPPP oo Γ= ,       (11) 
where P is the projection operator, V is the space of all the dyadic wavelet transforms of the 

functions in L2(R), Γ is the space of the sequences that have the same values at the modulus 
maxima points for all the scales as that obtained by Eq.(9), and Y is the space of the 
sequences whose values at the points between the two consecutive points of the modulus 
maxima for any scale are interpolated by the piece-wise exponential functions and that have 
no or few oscillations between the two adjacent modulus maxima.  

At the final stage, the signal is now reconstructed from the so-called inverse wavelet 
transform of Eq.(3) with the wavelet transform in Eq.(3), which is obtained from Eq.(2), 
being now replaced with the wavelet transform reconstructed from Eq.(11). In fact, the 
reconstructed signal is not the original signal but approximates it because the alternating 
projections of Eq.(11) converge, at most, onto the set that is very close to the set of the 
wavelet transform of the original pure signal [3]. 

3. Efficient Denoising Method for Dyadic Wavelet Transform 

In this section, a systematic and efficient way of noise discrimination based on the dyadic 
wavelets described in the previous section is proposed for an arbitrary signal. In fact, 
Belluzzo, et al [6] performed a study similar to our work. But, the wavelet transform used in 
their work was not the dyadic wavelet transform. It involved a small value slightly larger than 
1 as the scale, which can produce a much denser set of modulus maxima than the dyadic scale 
so that the positions of the modulus maxima for the signal variations can be separated from 
those for the noise more accurately with the inevitable pay for much larger burdens of the 
calculation efforts. 

Fig.1 shows the original pure, exponentially decaying, signal with transients around the 



center position. The total number of the signal samples is 1024 and it is assumed that the 
sampling time is 1 sec. Fig.2 shows the signal corrupted by the Gaussian white noise whose 
maximum value is up to 5. In this test, the maximum scale level J is given by J = 7 and the 
position k of each modulus maxima at the scale 2j is determined by 

  |})1k(fW||)k(fW||,)1k(fW||)k(fW:|k{ jjjj 2222
+≥−> . 

The procedure for removing the modulus maxima due to the noise is as follows. At first, 
we note that the positions, along the time sequence axis, of the modulus maxima for a pure 
signal as depicted in Fig.3 where the modulus maxima for all the scales are displayed 
simultaneously. By carefully inspecting the positions of the modulus maxima corresponding 
to one of the signal variations numerated by (1)~(7) in Fig.3, one could find the property: Let 
λj(kj) denote the position of one of the modulus maxima at the time kj and at the scale 2j. And 
δj is defined as δj = λj(kj) - λj+1(kj+1), where λj(kj) and λj+1(kj+1) have the same sign and are 
very close to each other. From the results of Fig.3, it could be found that δj-1 = 0.5δj. 

Based on this property, the selection of the modulus maxima can be performed easily even 
though the dyadic wavelet transform has a coarser set of modulus maxima than the wavelet 
transform in the work of Belluzzo, et al [6]. The discrimination of the modulus maxima 
begins at the coarsest scale 2J and then, goes up to the next finer scale. At the coarsest scale 2J, 
we determined the positions of the modulus maxima λJ(kJ), kJ =1,⋅⋅⋅,KJ,max. This 
determination can be done easily because almost all of the modulus maxima due to the noise 
disappear at this maximum scale level of J = 7. At the scale J-1, the modulus maxima due to 
the signal variations are determined along the same way as in Belluzzo, et al.  

From the scale 2J-2 to 21, the modulus maxima are determined by use of the facts that, with 
the reference value of δj calculated by δj = 0.5δj+1, if both λj(kj) and λj+1(kj+1) have the same 
sign and λj(kj) is closer to the reference value of δj + λj+1(kj+1) than any other λj at the same 
scale 2j, then λj(kj) is involved in the modulus maxima representing a variation point of the 
signal as indicated by the pre-determined λj+1(kj+1), λj+2(kj+2), ⋅⋅⋅, λJ(kJ).  

Fig.4 shows the modulus maxima for the noisy signal samples of Fig.2 and the 
discrimination results of the modulus maxima are shown in Fig.5. From the results of Fig.5, 
the wavelet transform that will approximate very closely the wavelet transform of the original 
pure signal can be reconstructed by the alternating projections. For the alternating projections, 
the one-by-one alternations of three projection operators are iterated up to 40 times. 

The reconstructed or synthesis signal from the inverse wavelet transform based on the 
reconstructed wavelet transform is shown in Fig.6, together with the original signal. From 
Fig.6, the noise effect is reduced remarkably and the signal reconstructed in this way 
approximates the pure signal satisfactorily. 

4. Configuration of S/G Water Level Control System  

In this section, the wavelet denoising method is incorporated into the water level controller 
in order for the on-line estimation of the flow rate and a proper configuration of the control 
system is presented to combine the wavelet transform with the water level controller.  

For the existing feedwater control systems for nuclear steam generators, only the water 
level measurement is used at low operating powers, discarding the measurements of the 
steam/feedwater flow rates because of the extremely high noise level which is often twice the 



level of the actual signal [7].  
In this paper, the noise reduction technique by the wavelet transform is applied to the 

estimation of the steam flow rate. As a water level controller, any feedback control scheme 
can be employed. The water level controller used in this simulation test is the fuzzy learning 
controller (FLC) [8]. Though the FLC showed a very good control performance for various 
simulation tests, it is not desirable that the FLC be implemented into the feedwater control 
system because the FLC requires accurate information on the mismatch between the 
feedwater and steam flow rates, as do the other controllers. In the FLC with the wavelet 
transform, the measurement of the steam flow rate is first fed into the wavelet transform. The 
wavelet transform recovers the steam flow rate signal and provides this to the flow error 
calculation module located at the input port of the FLC. An overall schematic diagram of the 
control structure is depicted in Fig.7. 

In Fig.7, the gl, gf, and go are the normalization factors. The el and ef are the errors defined 
as el = Lw

set – Lw and ef = Wst – Wfw, respectively, where Lw is the measured water level and 
Wst, Wfw represent the steam and feedwater flow rates, respectively. The superscript N and set 
represent, respectively, the normalized value for the corresponding physical quantity and the 
set point value. In the FLC, both normalized errors, el

N and ef
N, are fed firstly into the 

learning function and, from these normalized errors, the learning function creates and updates 
the rules of the fuzzy logic controller which is represented as wi (i = 1,⋅⋅⋅,49) in Fig.7. Based 
on these newly acquired control rules, the fuzzy logic controller performs the water level 
control, which results in the output value for the feedwater flow rate Wfw. 

The SMU and LMU represent the steam flow and water level measurement units, 
respectively. The unit VPC means the valve position controller that moves the valve to the 
position that exactly corresponds to the feedwater flow rate from the fuzzy logic controller. 

In the simulation test, the water level is assumed to be measured accurately and the 
feedwater flow rate is acquired from the output value of the fuzzy logic controller, assuming 
the VPC matches exactly the valve position to the commanded feedwater flow rate [9]. The 
noise signals in the steam flow rate are assumed to be Gaussian white noise whose magnitude 
is twice as high as the nominal value of the steam flow rate at 5% rated operating power. The 
number of data recorded for the input data of the wavelet transform is 64 samples which were 
sampled by the controller with the sampling time of 1 sec. 

As can be seen in Fig.7, the measured value of the steam flow rate via SMU is stored in the 
last bytes, s63, in the shift register denoted by S after all the data stored in S is shifted to the 
left. As for the actual input data for the wavelet transform, the samples in S are folded about 
the last s63 bytes, which results in a doubling of the recorded data samples in such a way that 

D = {d0, d1,⋅⋅⋅⋅, d127} = {s0, s1,⋅⋅⋅⋅, s63, s63,⋅⋅⋅⋅, s1, s0},   (12) 
where d: data sample in the register D for the wavelet transform and s: data sample in the 

shift register S. 
The reason for folding out of the samples of the steam flow rate measurements as in 

Eq.(12) is that, as you can see in section 3, the signal reconstruction or estimation is 
deteriorated at both boundaries, i.e., around the beginning and end positions. And so, we 
folded out the original samples to double the size where the value to be given to the controller 
is located at the center position of the input data of the wavelet transform. 

With the aim of an on-line implementation, the maximum scale level is set to J = 6. The 
iteration number for the alternating projections is set to 40. After the removal of the 



meaningless modulus maxima and the reconstruction of the wavelet transform by the 
alternating projections, the estimated signal is reconstructed from the inverse wavelet 
transform. The register DE in Fig.7 represents these reconstructed samples. Among the 
samples in DE, the average value for the two samples d63

E and d64
E is fed back to the error 

calculation module as a current value of the steam flow rate, i.e., Wst = (d63
E + d64

E)/2. When 
there is no variation in the steam flow rate, none of the modulus maxima are detected. In this 
case, the estimated value of the steam flow rate is given by 2/))64(fS)63(fS(W JJ 22st += , 
where S is the smoothing operator represented in Eq.(6). 

In the simulation test, the FLC with the wavelet transform is applied to the steam generator 
model developed by Irving, et al [10]. With this model, we identified the tracking 
performance when the set point of the water level was varied from 0 to 100 mm at the control 
start and also investigated the disturbance rejection performance when the steam flow rate 
was increased at 2000 sec and decreased at 2500 sec, by 0.4 % of the rated steam flow rate 
[8]. For the existence of the measurement noise, the noise-corrupted steam flow rate is 
depicted in Fig.8. Fig.9 shows the level control performance of the FLC with the wavelet 
transform and the estimates of the steam flow rates are shown in Fig.10. As can be seen in 
Fig.9 and Fig.10, the FLC controls the water level stably under a very high noise environment, 
with the aid of the wavelet transform.  

5. Conclusions 

In this paper, a wavelet denoising method was described based on the wavelets proposed 
by Mallat and Zhong and a systematic way of noise discrimination was proposed for a 
efficient implementation. The wavelet denoising method was applied to the water level 
controller, where the wavelet transform generated the on-line estimation value of the steam 
flow rate within the sampling times. The fuzzy learning controller, used as a water level 
controller in this paper, with the wavelet transform showed a very satisfactory control 
performance for the water level control of the steam generators through the simulation test. 
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 Fig.1 An original, arbitrary signal Fig.2 Signal with the Gaussian white noise 
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Fig.3 Modulus maxima for the pure signal 
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Fig.4 Modulus maxima for the signal with noise 
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Fig.5 Results of discrimination for the modulus maxima 
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Fig.6 Reconstructed signal from the noisy signal 
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Fig.7 Schematic diagram of the FLC with the wavelet transform 
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 Fig.8 Noisy steam flow rate Fig.9 Result of FLC + WT Fig.10 Estimated steam flowrate  
      at P = 5%&   feedwater flow rates 
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