

ABSTRACT

For the purpose of rapid earthquake reaction, PGA (Peak Ground Acceleration) values recorded at freefiled play a basic role. In this study, PGA values recorded in WSA (KEPRI) and WSN (KINS) stations located adjacently each other are compared. The difference in PGA values are found to be attributed to site amplification effect and high frequency attenuation effect. And the correction of amplified PGA values was conducted by removing site amplification effect.

1.

가 (PGA, Peak Ground Acceleration) 0.1g . PGA 1/10

0.01	g	(trigger	level)						
	(KE	PRI, Korea	Electric F	Power	Resea	arch Institu	te)		
		()				, (MCR,Ma	ain Con	trol Room	n) PGA
,									NS Koroo
Institute	e of Nuclear	Safety)	가						NS, KUIEA
,		callety,				가			
		71							
		가					,		
2.									
0.4		WON.							
Z.1.	- WSA	, WSN		PGA	N				
							1999	5	4
					가				
,		(KI	NS)	1999		4			
•									
		1999				3	•	3	
		PGA			,	,			PGA
					,	WSA(KEPR	I) WS	SN(KINS)	
PGA			1	·			050 0	-	
W3A,	, 00310		I	,			950 1	1	•
	1. WSA	WSN							
	WSA (KEPRI)	35 42 76	129 28 64						
	WSN (KINS)	35 42 40	129 28 19				3, 4		
						1	_ _		
2	WSA WS	N				PGA			가
50 km			WSA			WSN			·
	1999	962			(M=3	3.4)	WSA	PGA	34.95gal

(=0.035g) 1/10 OBE WSN 6.35gal(=0.006g) . フト 100 km WSA WSN PGA WSA WSN . WSA WSN 1 km PGA 가

,

2. WSA WSN PGA

.

YY/MM/DD	Station	Epi. Dist.	PGA-EW (gal)	PGA-NS (gal)
99/06/02	WSA	23	34.94	13.75
	WSN		4.19	6.35
02/07/12	WSA	35	0.45	0.47
	WSN		0.20	0.21
03/01/13	WSA	10	12.29	8.07
	WSN		2.75	2.01
03/03/01	WSA	17.9	12.44	5.78
	WSN		1.73	1.76
99/04/07	WSA	186	0.12	0.15
	WSN		0.09	0.09
02/10/23	WSA	133	0.11	0.10
	WSN		0.10	0.10
02/11/06	WSA	176	0.05	0.05
	WSN		0.03	0.03
03/03/10	WSA	105	0.06	0.05
	WSN		0.04	0.05

2.2.

, WSA WSN PGA 가

3 WSA WSN 가 가

가 가

, 가 ()¹⁾.

3. WSA WSN

			가	
WSA (KEPRI)	JC-V100 ()	EpiSensor	Q4128
WSN (KINS)	STS-2 ()	EpiSensor	Q4128

(03/03/01). (a) EW (b) NS

2.3.

(E(f)),

$$(D(R, f)), \qquad (S(f)) \qquad .$$
$$A(f) = E(f) \Box D(R, f) \Box S(f) \qquad (1)$$

, f (Hz), R (km) . WSA WSN
$$E(f)$$
 ? , ? 1 km

6. WSA WSN 가

10~20 Hz

. WSA

WSA .

10~20 Hz 가 가

가

3 David Boore (2002)³⁾ SMSIM(Strong Motion SIMulation) V2.16 •

3.

stress drop, σ	30 bars
quality factor, $\mathrm{Q}_0\mathrm{f}^{\eta}$	$Q_0=348, \ \eta=0.52$
shear wave velocity	3.5
high frequency attenuation, re	0.012

			(f_c)						,	
가 가			(Watana	abe, 1971) ⁴⁾ .						
			$\logf_{c} =$	1.5 - 0.2	$20 { m M}_{ m L}$						(2)
(2)	${ m M_L}{=}3.0$	f_c	7.94 Hz	, M _L =	=6.0	f_c	1.99	Hz			
		3.0							가		
			가				,				
					가						
				(M _w) 3	.0, 6.0			, 30	km,	200	km
		가		7 (a	ı), (b),	(c), (d)				,	
フ	ł						WSA				
	8		. 8	(a), (b)		M_w =3.0				가	
		가			가						
7(a), (b)				가							
7(c), (d)		가	,	가							
			2	7 ት							
, WSA		,								가	
PGA											
가						가					
	PGA				,					_	
2003 3 23			5	0 km			4	.9		-	
WSA, WS	N	450	km		WSA	EW, I	٧S	P	GA	С).13

0.15gal, 0.27gal

.

, . (a) Mw=3.0, R=30 km (b) Mw=6.0, R=30 km (c) Mw=3.0, R=200 km (d) Mw=6.0, R=200 km

2.5.

gal, 0.18gal

, WSN

WSA, WSN (3) ΕW 5 , (S $_{\rm EW}$) NS (S_{NS})가 .

$$S_{\text{effect}}(f) = \sqrt{S_{\text{EW}}(f)^2 + S_{\text{NS}}(f)^2}$$
(3)

$$\begin{array}{ccc} & \mathsf{EW}, \, \mathsf{NS} & & \mathsf{EW}, \, \mathsf{NS} \\ . \, \, \mathsf{EW}(\mathsf{f}) & \mathsf{NS}(\mathsf{f}) & \, \mathrm{ratio}\left(f \right) & \, \mathsf{NS} \end{array}$$

, S_{NS} (4)

$$S_{NS}(f) = \sqrt{\frac{S_{effect}(f)}{1 + ratio(f)}}$$
(4)

WSA, WS	N ratio (f) 4	EW , NS		
(4)	\mathbf{S}_{NS}	(3)	${ m S}_{ m EW}$	WSA, WSN	$\mathbf{S}_{\rm EW}$
S_{NS}	9				

4.			,	ratio (f)			
YY/MM/DD		YY/MM/DD		YY/MM/DD		YY/MM/DD	
99/04/23	3.2	01/05/27	2.5	02/05/01	2.0	03/01/10	2.7
99/06/02	3.4	01/06/23	2.8	02/06/11	1.8	03/01/13	2.8
99/09/11	3.4	0101/13	2.1	02/07/11	2.1	03/03/01	3.0
01/03/11	2.1	02/04/15	2.2	02/10/23	2.8	03/03/10	3.1

WSN 가 WSA

.

,

5. WSA	١	VSN	PGA	A		
YY/MM/DD	Station	Epi. D.	PGA-EW (gal)	PGA - EW` (gal)	PGA - NS (gal)	PGA-NS' (gal)
99/06/02	WSA	23	34.96	16.94	13.75	15.06
	WSN		4.19	4.27	6.35	5.82
02/07/12	WSA	35	0.45	0.22	0.47	0.44
	WSN		0.20	0.18	0.21	0.24
03/01/13	WSA	10	12.29	0.73	8.07	10.96
	WSN		2.75	2.63	2.01	2.76
03/03/01	WSA	17.9	12.44	5.41	5.78	5.89
	WSN		1.73	1.74	1.76	2.39
99/04/07	WSA	186	0.12	0.10	0.15	0.14
	WSN		0.09	0.06	0.09	0.09
02/10/23	WSA	133	0.11	0.06	0.10	0.13
	WSN		0.10	0.07	0.10	0.09
03/03/10	WSA	105	0.06	0.04	0.05	0.06
	WSN		0.04	0.03	0.05	0.46

W	/SA	10~20 Hz					가	
PGA		,					,	
PC	GA							
	WSA, WSN		WSA				2	
	가	(WOL)가	0.01g		가	가		
가	. WOL		1999	6 2	2 (M	=3.6)		
PGA 0.13g				1999	6	2		
WSA, WSN, WO	L							
, WSA	WSN	가						
	1	2				(20	002) ⁵⁾	
	가							ĸ
WSA, WSN	0.0	19, 0.021	. WS	SA				
								(
12(a)), WSN	10							
가	20	Hz				(12(b)).	
WSN		가						

12. 1999/06/02(M=3.6)

WOL WSA 가 3 가

가

13. 1999/06/02 (b)

(a) WSA, WSN, WOL WSN

.

6.		(1999/06/02)
	PGA (EW)	PGA (NS)
WSA (g)	0.0356	0.0140
WSA' (g)	0.0173	0.0153
WOL (g)	0.0132	0.0068
KINS (g)	0.0042	0.0064

.

1999 6 2 WSA EW PGA 0.0356g 0.0173g가, NS PGA 0.0173g . WOL EW, NS PGA 0.0132g, 0.068g , WSA 가 가 가 WSA 가 40 Hz 가 WOL 가 25 Hz . , WOL 14 30 Hz WSA PGA

WSA, WOL

, WSA	가	WOL	가					
			3	. WSA			WSA	PGA
PGA	7				3.0	가		PGA
	1.2~2.1		가 ,			0.8~0.9		가
	WSA . PGA				10~	20 Hz		
WSA			WSA 40 Hz	PGA	WOL			

. WSA			
· ,		가	
가	1.2~2.1,	0.8~0.9	
PGA	,	WSA, WSN, WOL	가

7. WSA	EW, NS PGA			
YY/MM/DD			(EW)	(NS)
99/06/02	3.4 (KMA)	18	2.06	0.89
99/09/11	3.4 (KMA)	30	2.22	1.04
01/01/13	2.1 (KIGAM)	108	1.33	0.64
01/03/11	2.1 (KIGAM)	5.8	1.98	0.72
01/05/27	2.5 (KMA)	22	1.69	0.82
01/06/23	2.8 (KIGAM)	21	1.80	0.68
02/04/15	2.2 (KIGAM)	23	1.16	1.15
02/05/01	2.0 (KIGAM)	38	1.92	0.80
02/06/11	1.8 (KIGAM)	13.6	1.10	0.85
02/07/11	2.1 (KMA)	35	2.09	1.07
03/01/10	2.7 (KMA)	31	1.96	0.99
03/01/13	2.8 (KMA)	10	1.68	0.73
03/03/01	3.0 (KMA)	18	2.29	0.98
03/03/10	3.1 (KMA)	105	1.58	0.81

4.

5.

" 가 2003 ,, ", [1] 1 , pp. 61-68, 2003. 7 [2] , 6 2 , pp. 39-50, 2002. [3] D. M., Boore, "SMSIM-Fortran program for simulation ground motions from earthquake", Version 2.16, U.S. Geol. Surv. Open-file Report 00-509, pp. 1-55, 2002. [4] H., Watanabe, "Determination of earthquake magnitude at regional distance in and near Japan", Zisin (in Japanese), Vol. 24, pp. 189-197, 1971. , W., Silva, , " Levenberg-Marquardt [5] ,

가", , 6 1 , pp. 20-28, 2002.