

Abstract

A 4-cycle real time analysis methodology was developed to solve 2-group 3-dimensional space-time dependent neutron diffusion equation, using coarse mesh finite difference method with interface coupling coefficient correction. Comparisons with higher order nodal method were performed by steady state and transient analyses of Yonggwang unit 1 cycle 15 reactor. For the steady state core within the typical operating moderator temperature range, the differences of core reactivity and radial power distribution are less than 100 pcm and 1 %, respectively, and no attentive difference was observed in the results of the transient analyses coupled with system calculations.

.

(FDM - Finite Difference Method)

, 4 FDM 3 가 가 , MASRS MASTER [1] MASTER RETRAN [2] 가 가 RETRAN MASTER 0.25 4 . 가 ANC^[3] ROCS^[4] 가 (CMFD – Coarse Mesh Finite Difference)^[5] 4 0.25 CMFD . 가 FDM 가 FDM (NLANM-Non-Linear Analytic Nodal Method)^[6] (CNCC - Corrective Nodal Coupling Coefficient) (ANM) (ICCC - Interface Coupling Coefficient Correction) . ICCC NLANM CMFD NLANM ICC ,

가

,

NLANM

.

[7] 1 15 ANC ,

II.

2 3

> $\frac{1}{v_g} \frac{d\phi_g}{dt} = \begin{cases} (1-\beta)\psi + S_d - L_1 - \Sigma_{r1}\phi_1, & g=1\\ \Sigma_{12}\phi_1 - L_2 - \Sigma_{r2}\phi_2, & g=2 \end{cases}.$ (1)

, S_d , ψ . g 가 3 .

 $L = \sum_{u=x,y,z} L_{u} = \sum_{u=x,y,z} \frac{1}{h_{u}} \left(J_{u}^{r} - J_{u}^{\ell} \right)$ (2)

 h_u , J_u^ℓ , J_u^r (current)

(FDM) (2) 가 (interface current) ${\widetilde J}_u$ и

 $\widetilde{J}_u = -\widetilde{D}_u(\phi^r - \phi^\ell)$ (3)

. , $\phi^\ell \phi^r$ \widetilde{D}_u $D_u^\ell = D_u^r$, и $h_u^\ell = h_u^r$ •

 $\widetilde{D}_u = \frac{2D_u^r D_u^\ell}{D_u^r h_u^\ell + D_u^\ell h_u^r}.$

•

.

(4)

(5)

•

(3)

$$\hat{D}_{u} = \frac{\widetilde{J}_{u}^{H} + \widetilde{D}_{u}(\phi^{r} - \phi^{\ell})}{\phi^{r} + \phi^{\ell}}.$$
(6)

m u (2) (5)

.

(CMFD)

,

$$L_{u}^{m} = a_{u}^{\ell} \phi^{m-} + a_{u} \phi^{m} + a_{u}^{r} \phi^{m+} .$$
⁽⁷⁾

$$m-m+m$$
, ℓr m, a .

$$a_{u}^{\ell} = -\frac{1}{h_{u}^{m}} (\tilde{D}_{u}^{\ell} - \hat{D}_{u}^{\ell}),$$

$$a_{u} = \frac{1}{h_{u}} \Big[\tilde{D}_{u}^{\ell} + \tilde{D}_{u}^{r} + \hat{D}_{u}^{\ell} - \hat{D}_{u}^{r}) \Big],$$

$$a_{u}^{r} = -\frac{1}{h_{u}^{m}} (\tilde{D}_{u}^{r} + \hat{D}_{u}^{r}).$$
(8)

 CMFD
 (5)
 (7)

 (1)
 (tri-diagonal)
 FDM

 7
 (outer iteration)
 7
 .
 (6)

 (
 ICCC)
 FDM

•

ICCC

.

.

$$\hat{D} = \frac{\tilde{D}h_u}{\phi^r + \phi^\ell} \left(\frac{d\phi}{du} \bigg|_s^H - \frac{\phi^r - \phi^\ell}{h_u} \right).$$
(9)

$$\left.\frac{d\phi}{du}\right|_{S}^{L} = \frac{\phi^{r} - \phi^{\ell}}{h_{u}} \tag{10}$$

가

$$\frac{\hat{D}}{\tilde{D}} = \frac{h_u}{\phi^r + \phi^\ell} \left(\frac{d\phi}{du} \bigg|_S^H - \frac{d\phi}{du} \bigg|_S^L \right)$$
(11)

.

ICCC

•

$$\hat{D}/\widetilde{D}$$

.

$$\Sigma = \Sigma(B_0, T_{f0}, D_{m0}) + \frac{\partial \Sigma}{\partial B} \Delta B + \frac{\partial \Sigma}{\partial \sqrt{T_f}} \Delta \sqrt{T_f} + \frac{\partial \Sigma}{\partial D_m} \Delta D_m + \Delta \Sigma_{CR}(B_0, T_{f0}, D_{m0}) + \frac{\partial \Delta \Sigma_{CR}}{\partial B} \Delta B + \frac{\partial \Delta \Sigma_{CR}}{\partial \sqrt{T_f}} \Delta \sqrt{T_f} + \frac{\partial \Delta \Sigma_{CR}}{\partial D_m} \Delta D_m$$
(12)

ICCC

$$\frac{\hat{D}}{\tilde{D}} = (1 - C) \left(\frac{\hat{D}}{\tilde{D}} \right)_0 + C \left(\frac{\hat{D}}{\tilde{D}} \right)_L.$$
(13)

•

1.

ICCC	3		NLANM	
	(CMFD_H)	,	
	ICC	C		
	ice			

ICCC (CMFD_C) .

III.	가
11.	۲ ۱

CMFD_C		CMFD_H		
		1	15	150 MWD/MTU
		2		

가.

ANC	(12)	1	. ANC
1 가 .			·

2. 1

1.

ANC

		(%)	(ppm)	(g/cm^3)	(°C)
1		0	500	0.74335	291.7
2	1	0	1000	0.74335	291.7
3	2	0	1	0.74335	291.7
4	1	100	500	0.74335	291.7
5	2	200	500	0.74335	291.7
6	1	0	500	0.59572	320.0
7	2	0	500	0.64768	320.0
8	3	0	500	0.68008	320.0
9	4	0	500	0.81195	250.0
10	5	0	500	0.89646	180.0
11	6	0	500	0.96536	100.0
12	7	0	500	0.99999	27.0

	(12)							
ICCC							가	
CMFD_H					CMFE	D_H		
	가		CMFD_C	2		ICCC가		
•			가					
~ ~ ~ ~								
CMFD_C					ICCC			
				가 .				
1.0							2	
		가		CMFD_C	CM	4FD_H		
		ICCC가						
	CMFD_C	CMFD_H		가				
		가	가				,	

•

2.

CMFD_C CMFD_H

		(PCM)	(P>1.0)) (%)
	ARO	ARI	ARO	ARI
	7.1	32.7	0.57	0.86
1	3.4	23.7	0.31	0.84
2	16.7	50.1	0.90	1.08
1	16.3	37.0	0.74	1.07
2	16.2	35.7	0.72	1.06
1	-43.4	-99.0	1.88	1.48
2	-25.9	-50.5	1.15	1.31
3	-15.1	-22.5	0.31	1.19
4	36.6	96.4	1.96	1.47
5	88.5	189.1	3.93	3.56
6	155.5	287.6	5.85	3.68
7	202.8	350.7	5.07	4.45

가 250 °C • 가 100 pcm , 가 1 % 500 pcm 5% ARO . CMFD_C CMFD_H 1.7 pcm 3 4 . , 50% Bank D 가 50% 5 6 3.4 pcm . 1.0 ור 0.5 % 가 가 가 • • 가 가 CMFD_C CMFD_H . 가 가 • RETRAN Dynamic-link Library (DLL) . RETRAN 6 1 3 3 RETRAN 1 / Bank SD 가 CMFD_H CMFD_C 694.7 pcm 692.0 pcm 1.14 \$ 0.1 . . 가 0.002 . 7 CMFD_H CMFD_C 77.14 % 0.440 78.82 % 0.448 . 가 . 1 % D, C

 7
 B7
 50 %

0.904	1.215	1.049	1.258	1.035	1.206	0.782	0.451
0.903	1.213	1.047	1.260	1.035	1.210	0.783	0.454
0.1	0.2	0.1	-0.1	0.0	-0.3	-0.1	-0.7
	0.961	1.234	1.279	1.291	1.265	1.222	0.345
	0.959	1.229	1.277	1.293	1.264	1.216	0.345
	0.1	0.4	0.2	-0.2	0.1	0.4	0.0
		1.273	1.328	1.248	1.167	1.010	
		1.270	1.330	1.247	1.173	1.007	
		0.2	-0.2	0.1	-0.5	0.3	
			1.080	0.808	0.332		
			1.084	0.810	0.333		
			-0.4	-0.2	-0.2		
				0.315			CMFD_C
				0.314			CMFD_H
				0.1			%

3. ARO

4. ARO

0.926	1.256	1.082	1.299	1.035	1.143	0.576	0.366
0.924	1.257	1.079	1.302	1.035	1.148	0.577	0.366
0.2	-0.1	0.3	-0.2	0.2	-0.5	-0.2	-0.0
	0.988	1.284	1.330	1.315	1.239	1.132	0.298
	0.985	1.280	1.327	1.319	1.239	1.127	0.297
	0.3	0.3	0.2	-0.3	0.0	0.4	0.1
		1.334	1.389	1.285	1.170	0.980	
		1.331	1.393	1.284	1.177	0.978	
		0.2	-0.3	0.1	-0.5	0.3	
			1.110	0.808	0.320		
			1.114	0.809	0.319		
			-0.4	-0.1	0.2		
				0.309			CMFD_C
				0.308			CMFD_H
				0.4			%

5. 50 % Bank D 50 %

6. 50 % Bank D 50 %

1.8	cm					0.25
	8				. /	
CMFD_H	CMFD_0	C	33.75	34.00	가	
가				35.75	36.00	
		32.41%	33.01 %			
			С	MFD_C	ICCC	
				가		
		4				
;	가					
					가 가	
					가	
9 (CMFD_H	CMFD_C			0.25	
						CMFD_H
	0.05	i				0.25
		0.05				, CMFD_C

		3	CMFD_H	CMFD_C		
10	가				CMFD_C	
		4.7	1	,		
						3
			0.25	가		

IV.

4		(ICCC) 기	
3		ICCC	1 15
	가	100 pcm,	1%
•		350 pcm	
		500 pcm	,
	5%	. /	
	가		
	NPA		

•

9.

3.

가

15

1

CMFD_H	0.016	0.062	0.438	0.516
CMFD_C	0.016	0.062	0.094	0.172

:

() Intel Pentium IV 3 GHz CPU ,

- J.J. Jeong et al., "MARS/MASTER Solution to OECD Main Steam Line Break Benchmark Exercise III," J. Korean Nucl. Soc., 32, 214 (2000).
- 2. , "RETRAN-MASTER-TORC ," KAERI/TR-2292/ 2002.
- 3. T.Q. Nguyen et al., "Qualification of the PHOENIX-P/ANC Nuclear Design System for Pressurized Water Reactor Cores," WCAP-11596-P-A (1988).
- 4. "User's Manual for ROCS," CE-CES-4 Rev. 11-P (1996).
- T. M. Sutton and B. N. Aviles, "Diffusion Theory Methods for Spatial Kinetics Calculations," *Progress in Nuclear Energy*, Vol. 30, No. 2, pp. 119-182 (1996).
- H.G. Joo et al., "PARCS, A Multi-Dimensional Two-Group Reactor Kinetics Code Based on the Nonlinear Analytic Nodal Method," PU/NE-98-26 (1998).
- D.I. Chang et al., "The Nuclear Design and Core Physics Characteristics of the Yonggwang Nuclear Power Plant Unit 1 Cycle 15," KNF-Y1C15-03010 (2003).