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ABSTRACT

Radiative tranfer is a complex phenomenon in which radiation field
interacts with material. This time-dependent non-linear radiative transfer
problem can be solved by Monte Carlo method. However, due to huge
computing time, there have been many efforts to reduce this computing time.
As aresult of this effort, several new methods were suggested. Semi-Analog
Monte Carlo (SMC) method is very accurate regardless of the time step size
used.

In this paper we extended this SMC method to solve 3-dimensional
heterogeneous problems and computerized in a computer code. It was tested
by applying it to a 1-D problem with analytic solution and to a
heterogeneous 3-dimensional problem.

[.INTRODUCTION

The thermal radiative transfer equation describes the transport of photons in a
medium. Up to now, there are many methods to solve time-dependent non-linear
radiative transfer problems. The Implicit Monte Carlo (IMC) method developed by
Fleck and Cummings [5] has been used for a long time until now. Although IMC is
accurate in small time step, it needs huge computation time. Recently several new
methods [6][9][10][11] were suggested to overcome time step dependency in IMC.
Each method has both merit and demerit [7], but it is known that semi-analog Monte



Carlo (SMC) method developed by Ahrens and Larsen [6] is accurate regardless of the
time step size. But the SMC method was developed for only 3-dimensional
homogeneous problems. [7]

In this study, we extended the SMC method to 3-dimensional heterogeneous
problems. The principal algorithm is as follows. Photons are born and then stream by
random 3-dimensional direction to collision sites, where they are randomly scattered or
absorbed by the material. If a photon is absorbed, its energy remains at the absorption
site until the re-emission time, which is random. The absorbed photon increases the
material energy.

|I. DESCRIPTION OF SEMI-ANALOG MONTE CARLO (SMC) METHOD
Assuming Loca Thermodynamic Equilibrium (LTE), which means that the matter is

in thermal equilibrium at atemperature T and the photons emit in a Planckian Spectrum,
and no scattering, the radiative transfer and material energy equations are[1]

%W+Q-VI rv,Qt)=o(r,v,T)[BW,T)-1(r,v.Q1],  (1a)
%: jj:a(r,v,T)U (r,v,Q,t)— B(v,T))dvdQ + S(r,v,t), (1b)
Ar
where the functions,
u,(r,T): material energy density, (2a)
T(r,t): material temperature, (2b)
S(r,v,t): external isotropic photon sour ce, (20)
I (r,v,Q,t): specific photon intensity, (2d)
o(r,v,T): opacity, (2e)
2h V8 .
B(v,T)=——,;~——: Plank function. (2f)
C e AT -1

In Eq. (1a), I(r,v,Q,t) and o(r,v,T) correspond to the angular flux,
w(r,E,Q,t) and the total cross-section o(r,E,T) in neutronics. In Eq. (1b),
u,(r,T) may be viewed as the delayed neutron precursor C,(r,t) . However, owing to
the nonlinear relationship between u,,(r,T) and B(v,T), Eq. (1b) requires a special
non-linearity treatment.

The other term to make the non-linearity in Eqg. (1b) is the temperature dependent
opacity o(r,v,T). Hence, for the special case of a frequency-independent opacity,
o(r,v,T)isassumed as o(r).

The Plank function integrated over frequency (or energy) is
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Equilibrium radiation energy density is defined as follows:
u (r,T)=a(T(r,1))".

where theradiation constant a is

Now frequency-integrated intensity and source are defined as follows:
yx(r,Q,t)Ej’:l(r,v,Q,t)dv,

s(r,t) EI:S(I‘,V,'[)CIV.

Egs. (1a) and (1b) can be integrated over frequency (grey approximation),

lay/(r,Q,t)
(o ot

+Q- -V (r,Q,t)= a(r)[%;'-r)—y/(r,ﬂ,t)} :

W: a(r)(iyx(r,ﬂ,t)dﬂ—i%;’ﬂdg}+s(r,t).

Heat capacity C, isdefined asfollows]2]:
au, (r,T)
a—T=CV(r,T).

The nonlinear relationship between u, (r,T) and u,(r,T) is

ou,(r,T) _au.(r,T)ou,(r,T)
ot ot aul(r,T)
_ou(r,T) ar au,(r,T) C.(r,T)au(r,T)
ot oau(r,T) 6T 4aT® ot
1 aur(r,T)
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where A(r), adimensionless function, is defined as followd 6]:
4aT?®
Br)= :
C,(r,T)
When the temperatureis low, the heat capacity C, becomes[2,12]
G (rT)=C, (T’
Then A(r) atlow temperature becomes,
4ar?® 4a
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Therefore, this approximation of the nonlinear relationship between u_ (r,T) and
u,(r,T) isexact at low temperature.

Eq. (9) issubstituted in Eq. (7b),

1 6u,(r,T)_ CUr(I’,T)
WT_G(r)[iW(r’Q’t)dQ_z[, . dQ}+s(r,t). (13)

Then, the analytic solution of Eq. (13) is,

u,(r,T)=u(r)e ™ 1 (r) J’; o (r)e PO [y (r,Q,t)dQdt
Az

(14)
+ ﬂ(r),[; e—cﬂ(r)a'(r)(t—t’)s(r )t
where u’(r) isequilibrium radiation energy density at initial time (t=0).
Eq. (14) isnow substituted in Eq. (7a),
%W+Q-Vw(r,Q,t)—a(r)l//(r,Q,t) -
o) yo(rye e 1 S0 gt o (1)er e [y (r 0,1 ol (15)
A A 0 i

Co(r) L[t —cpo(r)t—t) N\ !
o ﬂjoe s(r,t)dt’ .

The first term in R.H.S. of Eq. (15) represents the emission due to the initial
temperature distribution u’(r) and the second term represents emissions as a result of
temperature changes since the initial time t=0 and the third term represents
emissions as aresult of external source sincetheinitia time t=0.

In the first term, the particle emission times are sampled from an exponential PDF,

E =g P (16a)
or
P In[&, ], (16b)
cB(rye "

where & istherandom number between O and 1.



In the second and third terms, for a collision at time t’, the contribution of emitted
particles at time t has a distribution of e (") Then the particle emission times
are sampled from an exponential PDF,

[ dtcope = ¢, (17a)
or

, 1
t =t—w—0|n[§m]. (17b)

Eqg. (15) can be solved by Monte Carlo method as in a neutron transport problem.
The flow chart of the whole calculation is shown in < Fig. 1. >. Especialy, the flow
chart of heterogeneous calculation is shown in < Fig. 2. >. In 3 dimensiona
heterogeneous calculations, the distance of particle flight, sis determined as follows:

-1
1 EGJS" +1né,
s=Ys -~ (18)

=i o,

where | isthe mesh number where particle passes and | isthe mesh number where

particle collides.
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< Fig.1. Flowchart of 3-D SMC Calculation >
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1. NUMERICAL RESULTS
The code uses an XYZ mesh with mesh spacing, with material properties assumed
constant within each mesh cell for the duration of a time step. There is no time
discretization for tallies. Each time step is only for observation of the results.

The first test problem is Su-Olson Benchmark Problem. [8] The problem consists of
an infinite, homogeneous slab with a unit radiation source in —0.5< x < 0.5 (in mean
free path [%, ]) and it is assumed initially cold (which means u’(r), the initial
radiation density is 0.) for times 0<t<10(in mean free time [%c,ﬁ ]), with the
constants ¢ = B =o =1.0 for non-dimensionalization. Analytic solutions are provided
based on the transport equation for time, 1, 10 and 31.6 mft.

The mesh size used in calculation of SMC is 0.01 for 0< x<0.05 and 0.1 for
0.05< x<10.0 and 10.0 for y and z. The calculation is performed with 0< x <10,
0<y<10 and 0<z<10 with the reflective boundary conditions at the x=0 plan, y=0
plan, z=0 plan, y=10 plan and z=10 plan. At the x=10 plan, the vacuum boundary
condition is used.

Relative error R is used for statistical precision with respect to the estimated mean.



(19)
where

A1
X=—)») X. : samplemean, 204
NiZ . p (20a)
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~  o(X)
o(X)=—F=.
CO= N
The results of the first test problem is shown in < Fig. 3. > . Therelative error of this
problem is shown in < Fig. 4 > .The results of parallel computation are shown in <
Table1l>and <Fig. 5>.

N N 2
o%(x) = 1 z X2 _(%z xiJ . samplestandard deviation, (20b)
i=1 i=1

thevarianceof samplemean. (20c)
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< Fig.3. Material energy density in thefirst test problem with 10 histories>
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< Table 1. Results of Parallel Computation>

Number of CPUs Computing Time Speedup
1 1153.81 1
2 577.90 1.997
5 231.78 4978
8 146.87 7.856
10 117.39 9.829
20 63.21 18.254
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< Fig. 5. Computing time of Parallel Computation >

The second test problem is defined in < Table 2 > and < Fig.6 >. The information of
materials and opacitiesisin < Table 3 > and < Table 4 >. We assume that all photons
are of energy 1MeV. In < Table 3 >, the heat capacities are obtained as follows:[2]

C,(r)= 125;[4 R(ei] , (21)

where
o, [K"J:theDebyetemperature,

R = 8.3143x 10° [%mde.Ko}

The radiation coefficient a is used as the best experimental value of the Stefan-

Boltzmann constant:[ 2]
a=7.561x 10'16[ y » 04]
m

=7.561><10'22|:% , 4}.
cm’K”

The source exists only in region 1 from t=0[sec] to t=100[sec] with uniform

: theuniversal gasconstant .

(22)

distribution of intensity 10° [Me\%ec . Cmg} . The mesh size used in the calculation is

0.2[cm] in al x, y and z directions and 3x10° histories are used. The results of the
second test problem are shownin<Fig. 7>, <Fig.8>, <Fig.9>and<Fig.10>.



< Table 2. Configuration of the second test problem >

Region

Length [cm]

Material

-20<x<20
-20<y<20

-20<z2< 20

Aluminum (Al)

—-6.0<x<-20, 20<x<6.0
-6.0<y<-20, 20<y<60

-6.0<z<-20, 20<z<6.0

Copper (Cu)

-12.0<x<-6.0, 6.0<x<120
-120<y<-6.0, 6.0<y<120

-12.0<z<-6.0, 6.0<z<120

Carbon (C)

x<-=12.0, 12.0< x
y<-12.0, 120<y

z<-12.0, 12.0<z

Vacuum

< Table 3. Information of materialsin the second test problem > [2]

Gas Debye Heat Capacity
' 4a
Material constant (R) temperatljre (C,)I y 4] B(r) =
[J ] (65) [K°] cm®- K G (r)
g-K’
Aluminum (Al) 0.639538 398 6.40312x10°° 4.72332x107"°
Copper (Cu) 0.28669 315 1.91918x107° 1.57589x 107"
Carbon (C) 1.385667 1860 1.14276x 10" 2.64657x107"

< Table 4. The opacities of materialsin the second test problem > [14]

Total Absorption
Materia Opacity at IMeV Opacity
[cm™] a 1MeV
[em™]
Aluminum (Al) 0.54953 0.24165
Copper (Cu) 0.132795 0.05902
Carbon (C) 0.17172 0.07803
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< Fig. 7. Theresults of the second problem at (z,t)=(1cm,1.5x10°sec) >
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