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ABSTRACT 
 

Radiative tranfer is a complex phenomenon in which radiation field 
interacts with material. This time-dependent non-linear radiative transfer 
problem can be solved by Monte Carlo method. However, due to huge 
computing time, there have been many efforts to reduce this computing time. 
As a result of this effort, several new methods were suggested. Semi-Analog 
Monte Carlo (SMC) method is very accurate regardless of the time step size 
used.   

In this paper we extended this SMC method to solve 3-dimensional 
heterogeneous problems and computerized in a computer code. It was tested 
by applying it to a 1-D problem with analytic solution and to a 
heterogeneous 3-dimensional problem.     

 
 

I. INTRODUCTION 

The thermal radiative transfer equation describes the transport of photons in a 
medium. Up to now, there are many methods to solve time-dependent non-linear 
radiative transfer problems. The Implicit Monte Carlo (IMC) method developed by 
Fleck and Cummings [5] has been used for a long time until now. Although IMC is 
accurate in small time step, it needs huge computation time. Recently several new 
methods [6][9][10][11] were suggested to overcome time step dependency in IMC. 
Each method has both merit and demerit [7], but it is known that semi-analog Monte 



  

Carlo (SMC) method developed by Ahrens and Larsen [6] is accurate regardless of the 
time step size. But the SMC method was developed for only 3-dimensional 
homogeneous problems. [7]  

In this study, we extended the SMC method to 3-dimensional heterogeneous 
problems. The principal algorithm is as follows. Photons are born and then stream by 
random 3-dimensional direction to collision sites, where they are randomly scattered or 
absorbed by the material. If a photon is absorbed, its energy remains at the absorption 
site until the re-emission time, which is random. The absorbed photon increases the 
material energy.  

II. DESCRIPTION OF SEMI-ANALOG MONTE CARLO (SMC) METHOD 

Assuming Local Thermodynamic Equilibrium (LTE), which means that the matter is 
in thermal equilibrium at a temperature T and the photons emit in a Planckian Spectrum, 
and no scattering, the radiative transfer and material energy equations are[1] 
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In Eq. (1a), ),,,( trI Ων  and ),,( Tr νσ  correspond to the angular flux, 
),,,( tEr Ωψ  and the total cross-section ),,( TErσ  in neutronics. In Eq. (1b), 

T)(r,um  may be viewed as the delayed neutron precursor t)(r,Cd . However, owing to 
the nonlinear relationship between T)(r,um  and ),( TB ν , Eq. (1b) requires a special 
non-linearity treatment. 

The other term to make the non-linearity in Eq. (1b) is the temperature dependent 
opacity ),,( Tr νσ . Hence, for the special case of a frequency-independent opacity, 

),,( Tr νσ is assumed as )(rσ .  
The Plank function integrated over frequency (or energy) is 



  

( ) , ),(
4

),( 4

0
trTcadTB

π
νν =∫

∞
    (3) 

where  the radiation constant a  is 33
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Equilibrium radiation energy density is defined as follows: 
( ) ( ) .),(, 4trTaTrur ≡     (4) 

 
Now frequency-integrated intensity and source are defined as follows: 
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Eqs. (1a) and (1b) can be integrated over frequency (grey approximation), 
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Heat capacity VC  is defined as follows[2]: 
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The nonlinear relationship between T)(r,um  and T)(r,ur  is 
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where )(rβ , a dimensionless function, is defined as follows[6]: 

.
),(

4)(
3

TrC
aTr

V

=β      (10) 

When the temperature is low, the heat capacity VC  becomes [2,12] 
.)(),( 3TrCTrC VV =      (11) 

Then )(rβ  at low temperature becomes, 
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Therefore, this approximation of the nonlinear relationship between T)(r,um  and 
T)(r,ur  is exact at low temperature. 

 
Eq. (9) is substituted in Eq. (7b), 
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Then, the analytic solution of Eq. (13) is, 
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where )(0 rur   is equilibrium radiation energy density at initial time (t=0). 
 
Eq. (14) is now substituted in Eq. (7a), 
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The first term in R.H.S. of Eq. (15) represents the emission due to the initial 
temperature distribution )(0 rur  and the second term represents emissions as a result of 
temperature changes since the initial time 0=t  and the third term represents 
emissions as a result of external source since the initial time 0=t . 

In the first term, the particle emission times are sampled from an exponential PDF, 
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where mξ  is the random number between 0 and 1. 



  

In the second and third terms, for a collision at time t′ , the contribution of emitted 
particles at time t  has a distribution of ))(( ttrce ′−− βσ . Then the particle emission times 
are sampled from an exponential PDF, 
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Eq. (15) can be solved by Monte Carlo method as in a neutron transport problem. 

The flow chart of the whole calculation is shown in < Fig. 1. >. Especially, the flow 
chart of heterogeneous calculation is shown in < Fig. 2. >. In 3 dimensional 
heterogeneous calculations, the distance of particle flight, s is determined as follows: 
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where j  is the mesh number where particle passes and l  is the mesh number where 
particle collides. 

 
< Fig.1. Flowchart of 3-D SMC Calculation > 



< Fig.2. Flowchart of Heterogeneous Calculation >

III. NUMERICAL RESULTS
The code uses an XYZ mesh with mesh spacing, with material properties assumed

constant within each mesh cell for the duration of a time step. There is no time
discretization for tallies. Each time step is only for observation of the results.

The first test problem is Su-Olson Benchmark Problem. [8] The problem consists of
an infinite, homogeneous slab with a unit radiation source in 5.05.0 x  (in mean
free path 1 ) and it is assumed initially cold (which means )(0 rur , the initial
radiation density is 0.) for times 100 t (in mean free time c

1 ), with the
constants 0.1c  for non-dimensionalization. Analytic solutions are provided
based on the transport equation for time, 1, 10 and 31.6 mft.

The mesh size used in calculation of SMC is 0.01 for 05.00 x  and 0.1 for
0.1005.0 x  and 10.0 for y and z. The calculation is performed with 100 x ,

100 y  and 100 z  with the reflective boundary conditions at the x=0 plan, y=0
plan, z=0 plan, y=10 plan and z=10 plan. At the x=10 plan, the vacuum boundary
condition is used.

Relative error R is used for statistical precision with respect to the estimated mean.



  

,
ˆ
)(

ˆ
)ˆ(

xN
x

x
xR σσ

=≡      (19) 

where  
 

mean, sample:1ˆ
1
∑
=

=
N

i
ix

N
x      (20a) 

deviation, standard sample:11)(
2

11

22








−== ∑∑

==

N

i
i

N

i
i x

N
x

N
xσ (20b) 

mean. sample of variance the:.)()ˆ(
N
xx σσ =   (20c) 

The results of the first test problem is shown in < Fig. 3. > . The relative error of this 
problem is shown in < Fig. 4 > .The results of parallel computation are shown in < 
Table 1 > and < Fig. 5 >. 

 
 
 

 
< Fig.3. Material energy density in the first test problem with 107 histories> 
 

 



  

 
< Fig.4. Relative Error in the first test problem > 

 
 

< Table 1. Results of Parallel Computation> 
Number of CPUs Computing Time Speedup 

1 1153.81 1 

2 577.90 1.997 

5 231.78 4.978 

8 146.87 7.856 

10 117.39 9.829 

20 63.21 18.254 

 

 



  

 
< Fig. 5. Computing time of Parallel Computation > 

 
The second test problem is defined in < Table 2 > and < Fig.6 >. The information of 

materials and opacities is in < Table 3 > and < Table 4 >. We assume that all photons 
are of energy 1MeV. In < Table 3 >, the heat capacities are obtained as follows:[2] 
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The radiation coefficient a  is used as the best experimental value of the Stefan-
Boltzmann constant:[2]  
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The source exists only in region 1 from [sec]0=t  to [sec]100=t  with uniform 

distribution of intensity 





⋅ 3
6

sec10 cm
MeV . The mesh size used in the calculation is 

0.2 ][cm  in all x, y and z directions and 8103×  histories are used. The results of the 
second test problem are shown in < Fig. 7 > ,  < Fig. 8>,  < Fig. 9 > and < Fig. 10 >. 



  

 
< Table 2. Configuration of the second test problem > 

Region Length ][cm  Material 
 
1 

0.20.2 <<− x  
0.20.2 <<− y  
0.20.2 <<− z  

 
Aluminum (Al) 

 
2 

0.20.6 −<<− x , 0.60.2 << x  
0.20.6 −<<− y , 0.60.2 << y  
0.20.6 −<<− z , 0.60.2 << z  

 
Copper (Cu) 

 
3 

0.60.12 −<<− x , 0.120.6 << x  
0.60.12 −<<− y , 0.120.6 << y  
0.60.12 −<<− z , 0.120.6 << z  

 
Carbon (C) 

 
- 

0.12−<x , x<0.12  
0.12−<y , y<0.12  
0.12−<z , z<0.12  

 
Vacuum 

 
< Table 3. Information of materials in the second test problem > [2] 

 
Material 

Gas 
 constant (R) 

[ oKg
J

⋅
] 

Debye 
temperature 
( Dθ ) [ oK ]

Heat Capacity 

( vC )[ 43 oKcm
J

⋅
]
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Aluminum (Al) 0.639538 398 61040312.6 −×  161072332.4 −×  
Copper (Cu) 0.28669 315 51091918.1 −×  161057589.1 −×  
Carbon (C) 1.385667 1860 71014276.1 −×  141064657.2 −×  

 
< Table 4. The opacities of materials in the second test problem > [14] 

 
Material 

Total  
Opacity at 1MeV

[ 1−cm ] 

Absorption  
Opacity 
at 1MeV 
[ 1−cm ] 

Aluminum (Al) 0.54953 0.24165 
Copper (Cu) 0.132795 0.05902 
Carbon (C) 0.17172 0.07803 

 
 



  

 

 
< Fig. 6. Configuration of the second problem in ( )0,0,0 ><< zyx  octant > 

 

 

 
< Fig. 7. The results of the second problem at )sec105.1,1(),( 6×= cmtz  > 

 



  

 

< Fig. 8. The results of the second problem at )sec103,1(),( 6×= cmtz  > 
 

 

 
< Fig. 9. The results of the second problem at )sec104,1(),( 6×= cmtz  > 



  

 

< Fig. 10. The results of the second problem at )sec105.1,1(),( 6×= cmty  > 

 
IV. CONCLUSIONS 

 
The 3-dimensional heterogeneous semi-analog Monte Carlo (SMC) method was 

developed and computerized in a computer code to solve time-dependent non-linear 
radiative transfer problems. It was tested on a 1-dimensional test problem and the 
results are accurate comparing with the available analytic solutions. The 3-dimensional 
heterogeneous problem was also solved. 

To reduce computation time, the parallel computation is used and shows good 
performance. 
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