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Abstract

In this paper, we propose a new SN sweeping method called superelement-sweeping for 2-D

neutron transport calculation. Superelement is a unit of sweeping calculation and may con-

sist of heterogeneous meshes. Unlike existing SN sweeping methods, superelement-sweeping

method performs sweeping calculation with point value angular fluxes of a superelement. This

superelement-sweeping method can treat heterogeneous geometries and mixed mesh shapes

more easily than existing sweeping methods.

The paper provides a description of the new sweeping method and its numerical results of

2-D homogeneous and heterogeneous problems.

I. INTRODUCTION

In the neutron transport calculation, SN method has been widely used with its simplicity.
But its application areas are limited to the problems whose computational meshes are rectan-
gular or triangular. For complex geometry problems including circular meshes, the method of
characteristics(MOC)1−3 and collision probability method (CPM)4 are popular, but they cost
much calculation time and have difficulties in direct extending to three dimensional problems.

In this paper, we propose a new sweeping method which can treat heterogeneous problems while
preserving simplicity of SN . This method is different from existing SN sweeping methods in the
following viewpoints : 1) performs sweeping calculation with angular fluxes at corner points instead
of edge average fluxes in existing methods, 2) performs sweeping calculation on a superelement
which is allowed to consist of heterogeneous meshes, while one homogeneous mesh is treated in one
sweeping in existing methods, 3) assumes flux distribution on a superelement instead of average
angular flux on a computational mesh in existing methods.

The main difference is to assume flux distributions. Because we assume distributions on a
superelement with heterogeneous geometry, accuracy of calculation may be lower than MOC and
CPM. But calculation is much simpler than those methods and we can obtain continuous flux
distributions in the entire of the problem.



In this paper, we assumed bi-linear flux distribution with basis functions of the finite element
method(FEM)5. Thus it is expected that solution can be acceptable if flux shape is monotonic
in a superelement. We also expect that use of small size of superelements and high order basis
functions would provide better solution. To demonstrate efficiency and accuracy, we tested the
method on a small test problem with homogeneous geometry and on a heterogeneous 2-D OECD
benchmark problem C5G7 MOX6.

II. METHOD

The two-dimensional within-group transport equation is given as follows :

µn
∂ψg,n(x, y)

∂x
+ ηn

∂ψg,n(x, y)
∂y

+ σgψg,n(x, y) = qg,n(x, y), (1)

where standard notations7 are used. Let us consider superelement in Fig. 1 which is a unit of
sweeping calculation, that as an example, consists of heterogeneous three (mixed-shape) compu-
tational meshes.
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Figure 1: Rectangular superelement with heterogeneous geometry

In this superelement, we assume flux distribution as follows, dropping direction and energy
group indices, n and g :

ψ(x, y) =
4∑

i=1

fi(x, y)pi, (2)

where

p1 = ψ(0, b),

p2 = ψ(0, 0),

p3 = ψ(a, 0),

p4 = ψ(a, b),

(3)



f1(x, y) =
1
ab

(a− x)y,

f2(x, y) =
1
ab

(a− x)(b− y),

f3(x, y) =
1
ab
x(b− y),

f4(x, y) =
1
ab
xy.

(4)

Eq.(2) consists of bi-linear basis functions of finite element method type in rectangular geometry.
By integrating Eq.(1) over a superelement if there are N computational meshes in a superelement,
we obtain∫ b

0

dy

∫ a

0

dx

(
µ
∂ψ(x, y)
∂x

+ η
∂ψ(x, y)
∂y

+ σ(x, y)ψ(x, y)
)

=
∫ b

0

dy

∫ a

0

dxq(x, y),∫ b

0

dy

∫ a

0

dx

(
µ
∂ψ(x, y)
∂x

+ η
∂ψ(x, y)
∂y

)
+

N∑
m=1

∫
Vm

dAσmψ(x, y) =
N∑

m=1

∫
Vm

dAq(x, y),
(5)

where material properties are constant in a computational mesh. Eq.(4) can be written as follows
using Eq.(2) :

4∑
i=1

Fipi = Q, (6)

where

Fi =
∫ b

0

dy

∫ a

0

dx

(
µ
∂fi(x, y)
∂x

+ η
∂fi(x, y)

∂y

)
+

N∑
m=1

∫
Vm

dAσmfi(x, y), (7)

and

Q =
N∑

m=1

∫
Vm

dAq(x, y). (8)

These F values can be pre-calculated before iteration. Now sweeping calculation is possible with
Eq.(6). Fig. 2 shows the scheme of sweeping calculation for µ > 0, η > 0.
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Figure 2: Sweeping schemes of existing and superelement-sweeping methods

In existing SN sweep methods, they calculate two unknowns with two knowns, using auxiliary
equations(approximate) such as diamond difference scheme (DD). In the case of DD, unknowns



are obtained as follows :

ψi+1/2,j = 2ψij − ψi−1/2,j ,

ψi,j+1/2 = 2ψij − ψi,j−1/2,
(9)

where

ψij =
2µ

∆xi
ψi−1/2,j + 2η

∆yj
ψi,j−1/2 + qij

σij + 2µ
∆xi

+ 2η
∆yj

. (10)

In the superelement-sweeping method, there are one unknown (p4) and three knowns (p1, p2

and p3). We can calculate unknown p4 with Eq.(6) :

p4 = (Q− F1p1 − F2p2 − F3p3)/F4. (11)

Average angular flux on a computational mesh can then be written as follows :

ψm =
4∑

i=1

∫
Vm

dAfi(x, y)pi. (12)

III. SUPERELEMENT WITH MULTIPLE SHAPE FUNCTIONS

If superelement contains very heterogeneous geometry and material composition, bi-linear basis
functions on rectangular geometry would not be enough for accurate calculations. Thus we may
consider multiple shape functions on a superelement.

To implement multiple shape functions, we could consider more unknowns in a superelement.
Let us consider one more unknown as in Fig. 3 when µ, η > 0.
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Figure 3: Superelement with two unknowns

There are four triangular regions and two unknowns. So we can consider basis functions of
triangular geometry. We need two equations to obtain two unknowns. The two equations can
be obtained by integrating Eq.(1) over shaded region and unshaded region, respectively. Once



we calcaulte two unknowns, we can also calculate average angular flux similarly to Eq.(12) and
continue the sweeping calculation.

IV. NUMERICAL RESULTS

First we tested the method on a small test problem with two energy groups described in Fig.
4. Each cell has size of 1.0cm × 1.0cm. There are two types of cells and material properties are
homogeneous in a cell. The material properties are listed in Table 1.
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Figure 4: Configuration of the test problem

Table 1: Material properties
g σt νσf σs,1→g σs,2→g

1 (white) 1 0.2531 0.005925 0.233427 0.0000
2 0.5732 0.098170 0.010690 0.514280

2 (shaded) 1 0.2535 0.004820 0.233793 0.0000
2 0.5797 0.08228 0.010950 0.524960

Results are compared with the TWODANT code. S10 quadrature was selected for both calcu-
lations and each computational mesh size is 0.5cm × 0.5cm and iteration criteria were 10−6 for
eigenvalue and scalar flux. The results are very similar. The eigenvalues are 0.4896751 from the
TWODANT code and 0.4896750 from the superelement-sweeping method.

To test performance on heterogeneous problems, we chose the 2-D OECD benchmark problem
C5G7 MOX which has seven energy group cross sections. S10 quadrature was used and iteration
criteria were 10−6 for eigenvalue and scalar fluxes. Table 2 shows the results.

It took 1216 outer iterations and 1100 sec with 2.8 GHz Pentium 4 machine. If we apply good
acceleration in the calculation, it is expected that the computation time will be reduced to less
than 1 minute, although its accuracy should be improved. To improve accuracy, high order shape
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Figure 5: Configuration of the 2-D OECD benchmark problem

Table 2: Results of the OECD benchmark problem
keff Max./Min. pinpower RMS error(%)

superelement-sweeping 1.18858 2.579/0.230 1.99
Reference 1.18655 2.498/0.232 -

approximation can be considered.

V. CONCLUSIONS

A new sweeping scheme of SN methods was developed and described in this paper. It performs
sweeping calculation with angular fluxes at corner points and superelement which is allowed to
consist of heterogeneous meshes as a unit of sweeping calculation. It assumes flux distribution in
a superelement and we can obtain continuous flux distribution in the entire problem as a result of
the sweeping calculation.

For the test problem with homogeneous geometry, superelement-sweeping provides almost the
same results compared with DD calculation. For the OECD benchmark problem with heteroge-
neous geometry, there are 0.17% error for eigenvalue and 1.99% RMS error for power distribution
compared with reference values provided by Monte Carlo calculation.

The superelement-sweeping method shows good performance in computation time, but it needs
to improve accuracy. To improve accuracy, several methods such as high order basis functions being
considered.
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