2003

LIBERTE/MASTER

KAERI				LIBE	RTE
	MAS	TER			LIBERTE
	가	2			
				. MASTER	2
				3	
			LIBERTE/MASTER		
	1				
가					

Abstract

New code package of nuclear design was developed in KAERI with the coupling of the transport lattice code called LIBERTE, and the nodal diffusion code MASTER. LIBERTE code is a two dimensional transport lattice code with the function of depletion to generate few group constants to be used in the reactor core analysis through the assembly calculation. MASTER code is a three dimensional nodal diffusion code using 2group constants to perform the static and transient analysis. This new code package, LIBERTE/MASTER, is the first domestic and inherent nuclear design tool. The results of the core-follow calculations for YGN-1 show that this new code package works properly.

가

3

Ι.

. 가

Westinghouse ABB-CE DIT/ROCS,

PHOENIX-P/ANC[1]

Westinghouse

가 Studsvik CASMO/SIMULATE . . 3 가 가 MASTER [2] SMART SMART . CASMO-3[3] HELIOS[4] . 가 . 가 가 DENT-2D (Deterministic Neutral Particle <u>Transport</u> Code in <u>2</u>-<u>D</u>imensional Space)[5] . DENT-2D LIBERTE (Linear Boltzmann Transport Equation Solver for <u>Reactor Physics and Engineering</u>) MASTER

가

가 2 LIBERTE MASTER 3 가 1 CASMO-3/MASTER

LIBERTE/MASTER 1 . LIBERTE (1)

PROLOG LIBERTE MASTER . MASTER .

.

.

II.1 LIBERTE

LIBERTE , , , , , , , , , , 가 . LIBERTE . HELIOS

,

, ORIGEN-2[6] . LIBERTE . characteristics [7,8] S_N . . .

characteristics 가 (Source Iteration), (Power Iteration) CMFD (Coarse Mesh

subgroup [10,11] . subgroup . LIBERTE characteristics .

CMFD

가

가 .

1.0

. LIBERTE B₁ [3] . (Matrix Exponential Method)[6]

,

.

II.2 PROLOG

.

,

3 MASTER LIBERTE PROLOG [12] . LIBERTE

. 2

 $\sigma(B, ppm, T_f, T_m, \rho_m) = \sigma(B, ppm_0, T_{f0}, T_{m0}, \rho_{m0}) + \frac{\partial \sigma}{\partial ppm} \Delta ppm + \frac{\partial \sigma}{\partial \sqrt{T_f}} \Delta \sqrt{T_f} + \frac{\partial \sigma}{\partial T_m} \Delta T_m + \frac{\partial \sigma}{\partial \rho_m} \Delta \rho_m$ $, B , ppm , T_f$ (1)

, T_m , D_m 'O'

II.3 MASTER

MASTER 2 3 .[2] MASTER , , , , , , ,

, , (adjoint) , . MASTER (Nodal Expansion Method), (Nodal Integration Method), (Coarse-mesh Finite Difference Method) 3 가 .

2 . , MASTER 가 .[13]

(response matrix) .[14]

.

MASTER CASMO-3 .[15] 가 -가 -(fully weighted predictor-corrector method) (semi weighted predictor-corrector method) . MASTER (subchannel) • . MASTER COBRA3-C/P .[16] MASTER . MASTER (time discretization) implicit first order Euler method 가 (frequency transformation) . MASTER MASTER . , ,

III. 가 LIBERTE/MASTER 1 1 2 , , 가, 가, , CASMO-3/MASTER . 2 3 CASMO-3/MASTER LIBERTE/MASTER . CASMO-3/MASTER LIBERTE/MASTER 4 CASMO-3/MASTER .

가 2.0% 가 . 1.0% 1 4 1 CASMO-3/MASTER 4.5pcm/°C 가 7 2 CASMO-

가 2 CASMO-3/MASTER 3 가 CASMO-3/MASTER 가 10%

4 ・ 1 フト

.

LIBERTE/MASTER 가

.

IV. LIBERTE/MASTER . 가 1 1, 2 , , , . CASMO-3/MASTER . MASTER

LIBERTE . ア ア ア ア . LIBERTE/MASTER ア ア

- 1. T.Q. Nguyen et al., " Qualification of PHOENIX-P/ANC Nuclear Design System for PWR Cores," WCAP-11596-P-A, Westinghouse (1988)
- 2. B. O. Cho, et al., "MASTER-2.0 : Multi-purpose Analyzer for Static and Transient Effects of Reactors," KAERI/TR-1211/99 (1999)
- 3. M. Edenius et al., "CASMO-3, A Fuel Assembly Burnup Program Methodology Version 4.4," STUDSVIK/NFA-89/2 (1989)
- 4. R. J. Stamml' er et al., "HELIOS Methods," Studsvik Scandpower (1998)
- 5. K.S. Kim, H.Y. Kim, S.Q. Zee, " Development of DENT-2D Code Based on the Characteristics Method," (Accepted to ANS 2002 Annual Meeting)
- M. J. Bell, "ORIGEN-The ORNL Isotope Generation and Depletion Code," ORNL-4628 (1973)
- 7. J. R. Askew, " A Characteristics Formulation of the Neutron Transport Equation in Complicated Geometries," AEEW-M 1108, U.K. Atomic Energy Authority (1971)
- M. J. Halsall et al., "CACTUS, A Characteristics Solutions to the Neutron Transport Equations in Complicated Geometries," AEEW-R-1291, U.K. Atomic Energy Authority (1980)
- J.Y. Cho et al., " Cell Based CMFD Formulation for Acceleration of Whole-core Method of Characteristics Calculations," Proc. of KNS Autumn Mtg., Suwon, Korea (2001)
- A. Khairallah and J. Recolin, "Calcul de l'autoprotection resonnante dans les cellules complexes par la methode des sous-groupes," *Proc. Seminar IAEA-SM-154 on Numerical Reactor Calculations*, pp 305-317, I.A.E.A., Vienna (1972)
- 11. C. Notari and Z. Garraffo, "Spatial self-shielding for heterogeneous cells," Ann. nucl. Energy, 14, 615-618 (1987)
- 12. J. S. Song, " PROLOG 1.1 User' s Manual," KAERI/UM-4/99 (1999)
- K. Koebke, "A New Approach to Homogenization and Group Condensation," IAEA Technical Committee Meeting on Homogenization Methods in Reactors Physics, IAEA-TECDOC-231, Lugano (1978)
- H. J. Winter and K. Koebke, "Effective Cross Sections for the Radial and Axial Reflector in the Standard 79A Design Method," Siemens/KWU Technical Report R121-339/80, Dec. (1980)
- 15. M. Edenius and B. Forssen, "CASMO-3: A Fuel Assembly Burnup Program Methodology Version 4.4," STUDSVIK/NFA-89/2, November (1989)

1. LIBERTE/MASTER

0.996	1.196	1.017	1.187	0.985	1.127	0.869	0.824
0.991	1.188	1.012	1.183	0.985	1.130	0.876	0.826
0.50	0.67	0.49	0.34	0.00	-0.27	-0.81	-0.24
1.196	1.018	1.247	0.996	1.203	0.949	1.124	0.663
1.188	1.013	1.242	0.994	1.203	0.954	1.130	0.660
0.67	0.49	0.40	0.20	0.00	-0.53	-0.53	0.45
1.017	1.247	0.995	1.139	0.951	1.090	1.007	
1.012	1.242	0.991	1.137	0.954	1.100	1.008	
0.49	0.40	0.40	0.18	-0.32	-0.92	-0.10	
1.187	0.996	1.139	0.908	1.041	1.204	0.697	
1.183	0.994	1.137	0.908	1.045	1.214	0.692	
0.34	0.20	0.18	0.00	-0.38	-0.83	0.72	
0.985	1.203	0.951	1.041	0.775	0.741		-
0.985	1.203	0.954	1.045	0.772	0.726		
0.00	0.00	-0.32	-0.38	0.39	2.02		
1.127	0.949	1.090	1.204	0.741			
1.130	0.954	1.100	1.214	0.726			
-0.27	-0.53	-0.92	-0.83	2.02			
0.869	1.124	1.007	0.697				
0.876	1.130	1.008	0.692				
-0.81	-0.53	-0.10	0.72				
0.824	0.663			[1]CASM	IO/MASTE	ER	
0.826	0.660	[2]LIBERTE/MASTER					
-0.24	0.45	[3]Difference (%) ([1]-[2])/[1]*100					

IJ

)

4

(1

1.	(ITC)						
Cycle	D . 1		ITC (pcm/°C)	*Difference (pcm/°C)			
	Rod	Measured	CAS/MAS	LIB/MAS	CAS/MAS	LIB/MAS	
1	ARO	6.75	7.17	11.50	0.42	4.75	
	D in	7.25	7.87	12.30	0.62	5.05	
	D+C in	-0.85	-1.33	3.48	-0.48	4.33	
2	ARO	-1.73	-0.58	2.78	1.15	4.51	
	D in	-1.72	-0.95	2.36	0.77	4.08	

* Cal.-Meas.

2. 7 ¹ (IBW)

Cycle	Ded		IBW (ppm/pcm)	*Difference (%)		
	Kod	Measured	CAS/MAS	LIB/MAS	CAS/MAS	LIB/MAS
1	D in	-0.0838	-0.0776	-0.0719	-7.4	-14.2
	D+C in	-0.0769	-0.0786	-0.0729	2.2	-5.3
	D+C+B in	-0.0766	-0.0786	-0.0732	2.6	-4.7
	D+C+B+A in	-0.0753	-0.0726	-0.0676	-3.6	-10.4
2	D in	NA	-0.0969	-0.0890	NA	NA
	C in	NA	-0.0982	-0.0903	NA	NA
	B in	NA	-0.0973	-0.0896	NA	NA
	A in	NA	-0.0965	-0.0887	NA	NA

* (Cal.-Meas.)/Meas.*100

3.	가					
Cycle	D. I		Rod Worth (pcm)	*Difference (%)		
	Rod	Measured	CAS/MAS	LIB/MAS	CAS/MAS	LIB/MAS
	D in	489	514	496	-4.9	1.4
	C (D in)	1241	1237	1139	0.3	-8.2
1	B (D+C in)	1664	1657	1561	0.4	-6.2
	A (D+C+B in)	1042	1099	1106	-5.2	6.1
	Total	4436	4507	4302	-1.6	-3.0
2	D	577	550	583	4.8	1.0
	С	818	814	739	0.4	-9.7
	В	1272	1279	1224	-0.6	-3.8
	А	841	818	878	2.8	4.4
	Total	3507	3461	3424	1.3	-2.4

* (Cal.-Meas.)/Meas.*100

4.						
Cruela		Critical H	Boron Concentrati	*Difference (ppm)		
Cycle	Kou	Measured	CAS/MAS	LIB/MAS	CAS/MAS	LIB/MAS
	ARO	1208	1212	1174	4	34
	D in	1167	1171	1138	4	29
1	D+C in	1075	1074	1055	-1	20
	D+C+B in	948	943	940	-5	8
	D+C+B+A in	874	863	865	-11	9
	ARO	1249	1267	1207	18	56
2	D in	NA	1213	1155	NA	NA
	C in	NA	1186	1141	NA	NA
	B in	NA	1141	1097	NA	NA
	A in	NA	1187	1129	NA	NA

* Cal.-Meas.