

Abstract

An analytical technique for trace amounts of tritium in spent Pressurized Water Reactor (PWR) fuels has been established. Considering the effective management of radioactive wastes generated through the whole experimental process and the radiological safety for analysts, a separation condition which ¹⁴C and ³H can be sequentially recovered from a single sample was optimized. ¹⁴CO₂ evolved during dissolution of the spent PWR fuels with nitric acid, was trapped in an aliquot of 1.5 M NaOH. ¹²⁹E, a volatile beta emitter, which was recovered along with ¹⁴CO₂ was removed using a silver nitrate- impregnated silica gel absorbent. After recovering ¹⁴CO₂, ³H as ³H₂O was selectively recovered by distillation. Its recovery yield was 97.9% with a relative standard deviation of 0.9% (n=3). ³H in a spent PWR fuel with burnups of 37,000 MWd/MtU was analyzed and reliability of this analytical technique was evaluated by standard addition method.

가

1.

					•			
(³ H	T)	(¹⁴]	N + n	^{12}C	+ ³ H)			
	,	가						
	1)		³ H 1	ternary f	iss ion			⁶ Li
14 N		²⁾ , Sella	afie ld	BNFL	1995			2.7 ×
10 ¹⁵ Bq	5.90 ×	10 ¹⁴ Bq					3)	
	HT			³ H				
	4	.)						가
	가							
³ H	(E _{m a x} =	18.6 keV)						
								,
		³ H					5)	
		³ H						
					³ H			
	³Н	(6%	/)	500	600		CuO
	(³ H ₂ O)		6					⁶⁾ .
							Hot Cell	
	가					•		
	2	2	490	500	가		U ₃ O ₈	
voloxidation	Ϋ́Η	(99.8%) ³ H ₂ C)	7.8)			Ъ	
³ H ₂ O				•	, JAE	₹ 121	-1	
	311.0			4	⁻ H	1%	71	HI
	H2O				•	71	311	
	п						н ³ ц	
							п ³ ц	
							11	
		9 ,10)		, フト				
		,		·				
	35,000 MWd/ Mt	U						
	,	가					${}^{3}\mathrm{H}$	
	$^{3}\text{H}_{2}\text{O}$						RuO ₄	
								$^{3}\text{H}_{2}\text{O}$
								37,000

 $^{3}\mathrm{H}$

MW d/ Mt U

	가	가	
2.			

2.1.

³H₂O Fig. 1 . ³H Packard (Tri-Carb 2500, U.S.A.) , EG & G ORTEC ADCAM 100 series

2.2.

Amersham Lab ³ H ₂ O	$Na_2^{14}CO_3$	${}^{3}H_{2}$	20:
2003 9 1 : 636.7 Bq/ mL	$Na_2^{14}CO_3$: 238.1 Bq/ mL).		
,	Milli- Q	plus Ultra Pure Water Syste	em
(Millipore)	. Packard	Ultima Gold AB .	

2.3.

 10
 35,000 MWd/MtU

 Spex

 (1,000 mg/L)
 U3O8 (NBL Certified Reference Material 129)
 Table 1

 7
 .
 (100 mL)
 14C
 71

 CaCO371 5 g 71
 3H2O
 Na2¹⁴CO3
 71
 .

2.4.

2	37,000 MWd/MtU		0.849 g	CaCO ₃ 2.5 g	Hot Cell
		¹⁴ C	(Fig. 1)		. 8 M
HNO ₃	12	가			

2.5.

.

		0.1 mL(60 mR/h)	25 mL	8 M
HNO ₃	25 mL				

2.6. ³H₂O

		4.0 mL	$^{3}\text{H}_{2}\text{O}$	(Fi	g. 2)			NaOH	(1
g)						20 mL				
						1 mL				
				1.0 mL	가		가 14			
	가									
	5	mL				1				
						20 mL				

2.7. ³H

15 mL 1 mL 2 18.6 keV 30 .

2.8. 가 가

5		15 mL		1 mL	0.0 300 Bq
$^{3}\text{H}_{2}\text{O}$	가	2 18.6 keV	30		
1 mL	0.0 300 Bq	3 H ₂ O			
${}^{3}\mathrm{H}$					

3.

3.1. ³H

			^{14}C	³ H	¹⁴ CO	HT	4,11)		
	¹⁴ CO				¹⁴ C0	O ₂ ¹²⁻¹⁴⁾	${}^{3}\mathrm{H}$	${}^{3}\text{H}_{2}\text{O}$	
					4)	•			
		¹⁴ CO ₂	1					³ H	
					¹⁴ C	³ H		,	
	$^{14}{\rm CO}_2$								
						CO_2		CaCO ₃	
		가		•		¹⁴ C	CO ₂		
	⁸⁵ Kr			129 I	AgNO₃7ŀ	si	lica gel		•
$^{3}\text{H}_{2}\text{O}$		가					"2	.6. ${}^{3}\text{H}_{2}\text{O}$	"
]	ICP- MS					Table 2	

"Blank" . "Test" 가 "Blank" . 가 ³H . . ⁹⁹Tc (63 Bq) 가 ⁹⁹Tc

⁹⁹Tc .

3.2. ³H

.

$^{3}\text{H}_{2}\text{O}$	¹⁴ C	CO_2	Fig 2			
		90	가	RuO ₄		
		NaOH				
$^{3}\text{H}_{2}\text{O}$				가	,	
					,	
	가			가 가	. Fig. 3	
		95%	³ H₂Oフト		${}^{3}\text{H}_{2}\text{O}$ 2	

•

•

3.3. ³H

$^{3}\text{H}_{2}\text{O}$	1 mL (665 Bq)	가			3		
			³ H				
	Table 3			97.9%		0.9%	•
3.4.	³ H			가			

JAERI				³ H	
가 .		³ H			
	³ H	가			
		³ H			
가			³ H		가

. 37,000 MWd/ MtU $^{3}\mathrm{H}$ Table 4 , 1 g 12,891.6 KBq[348.4 μCi (0.036 μg) ³H • ORIGEN2 [19,684 KBq [(532 µCi (0.055 µg) ³H/g SF] 65.5% $^{3}\mathrm{H}$. JAERI ^{3}H 34.5%가 • 가 가 가 Fig. 4

가 가 12,891 KBq/g SF 13,527 KBq(365.6 µCi (0.038 µg)/g SF 가 - 4.7% (Table 4, Experiment-2). 가 $^{3}\text{H}_{2}\text{O}$ 가 가 가 . Fig. 5 12,738,086 Bq [344.3 µCi (0.036 µg)]/g SF 13,242,347.6 Bq [357.9 µCi $(0.037 \ \mu g)]/g \ SF$ 가 (Table 4, Experiment-2) - 3.8% ЗH Fig. 6 Sb. Ce Cs

가

- [1] UNSCEAR, Sources and Effects of Ionizing Radiation, United Nations Publications, Vienna, Austria, 1977.
- [2] G. F. Knoll, Radiation, Determination and Measurement, Wiley, Inc, New York, 1979.
- [3] BNFL Annual report on radioactive discharges and monitoring of the environment, 1995 vol. 1, British Nuclear Fuels, Risely, Cheshire, UK, 1995.
- [4] Dissolution studies of spent nuclear fuels, JAERI-M 91-010, 1991.
- [5] M. A. Gautier, E. S. Gladney and D. R. Perrin, "Quality assurance for Health and Environmental Chemistry: 1989" Los Alamos National Laboratory Report LA-11995-MS, 1990.
- [6] PNL- ALO- 479 Technical Report, 1989.
- [7] J. A. Stone and D. R. Johnson, DP-MS-78-7, 1978.
- [8] D. R. Johnson and J. A. Stone, DP-MS-77-77, 1978.
- [9] E. W. Baumann and K. W. MacMurdo, CONF 771031-1, 1977.

- [10] P. E. Warwick, I. W. Croudace, A. G. Howard, Anal. Chim. Acta, 382, 225, 1999.
- [11] G. L. Haag, J. W. Nehis, Jr. and G. C. Young, "Carbon-14 immobilization via the Ba(OH)2 · 8 H₂O process", In Proc. 17th DOE Nuclear Air Cleaning Conference, CONF-828033, U.S. DOE, pp 431-453, 1983.
- [12] W. Davis, Jr., Carbon-14 Production in nuclear reactors, ORNL/NUREG/TM-12, Oak Ridge National Laboratory, Oak Ridge, TN, 1977.
- [13] M. J. Kabat, "Monitoring and removal of gaseous carbon-14 species", In Proc. 15th DOE Nuclear air Cleaning Conference, CONF-780819, National Technical Information Service, Springfield, 1979.
- [14] C. O. Kunz, "14C release at light water reactors", In Proc. 17th DOE Nuclear air Cleaning Conference, CONF- 820833, National Technical Information Service, Springfield, VA, pp 414-430, 1983.

Element	Spent fuel, µg/g	Element μ g/100 mL SIM soln.			
¹⁾ HT	1,242.8 kBq	665.6 Bq			
Ba	1,835	3,670			
Cd	119.8	240			
Ce	2,505	5,000			
Cs	2,511	5,000			
Eu	141.6	300			
Gd	136.9	300			
La	1,284	2,700			
Мо	3,528	7,200			
Nd	4,257	8,500			
Pd	1,505	3,000			
Pr	1,177	2,400			
Rb	368.8	800			
Rh	486.0	1,000			
Ru	2,330	4,500			
Sb	100	100			
Sn	200	200			
Se	59.3	120			
Sm	906.9	1,810			
Sr	806.6	1,610			
	809.2	63 Bq			
Те	515.5	1,030			
Y	476.7	1,000			
Zr	3,805	7,610			
U	0.9539 g	2.002 g			
CaCO ₃	2.5 g	5 g			
¹⁾ Ag	82.4	0.824			
¹⁾ I	249.3	2.5			

Table 1. Chemical composition of simulated spent PWR fuel dissolver solution

1): Element added to a round bottom flask containing 0.5 mL of simulated spent fuel dissolver solution prior to tritium recovery experiment

Metal element	Blank, ng/ mL	Test, ng/mL
Ba	12.2	3.7
Cd	-	-
Се	0.1	-
Cs	0.3	0.1
Eu	4.1	-
Gd	-	-
La	1.3	-
Мо	0.9	-
Nd	0.1	-
Pd	-	-
Pr	-	-
Rb	12.9	0.1
Rh	-	-
Ru	-	-
Se	-	-
S m	-	-
Sr	0.4	-
Те	1.1	-
Y	0.8	-
Zr	0.5	-
Sb	0.1	-
S n	0.1	-
U	0.1	2.3

Table 2. Analytical result of the recovered distillate by $\ensuremath{\text{ICP-MS}}$

Table 3. Recovery of ³H from simulated spent PWR fuel dissolver solutions by distillation

Test No	Added, Bq	Found, Bq	Recovery, %	Average, %	RSD, %
H- 1	665	650.5	97.8		
H- 2	665	657.6	98.8	97.9	0.9
H- 3	665	643.0	97.1		

Table 4. Analytical results obtained by standard addition method

Experiment	Standard	Result, kBq/g Spent Fuel	Deviation, %	
1	No addition	12,891.6 [348.4 μCi (0.036 μg)]	4.7	
	Addition-1	13,527 [(365.6 µCi (0.038 µg)]		
2	No addition	12,738,1 [344.3 µСі (0.036 µg)]	2.0	
	Addition-2	13,242,3 [357.9 µСі (0.037 µg)]	- 3.8	

Fig. 1. Apparatus for dissolution of spent PWR fuels and ¹⁴C recovery.

- ① Voltage controller ② 3 -neck dissolution flask
- (a) Tube for introduction of $HNO_3(1+1)$ (a) Reflux condenser (b) $I_2(I-129)$ Trap (b) Trap with 1.5M -NaOH 25mL (c) Molecular sieve13X (8) Heating mantle

- 9 Trap with 1.5 M NaOH 50mL

Fig. 2. Apparatus for ³H recovery.

- Cooling water outlet
 Cooling water inlet
 Cooling condenser

- ④ Distiller
- ⑤ Receiver
- 6 Round bottom flask
- ⑦ Heating mantle

Fig. 3. Recovery behaviour of ³H from simulated spent PWR fuel dissolver solution.

Fig. 1. Standard addition curve of tritium

Fig. 5. Standard addition curve of tritium. R=0.9952, Standard deviation =0.9002. Y=58.6496+0.9715X

Fig. 1. Standard addition curve of tritium

Fig. 6. Gamma spectrum detected in a distilled solution.