kotope Separation of Yb- 168 for Low Energy γ -Ray Sources

Abstract

We developed laser isotope separation technology of stable isotopes of low melting point metals. Yb-168 can be effectively used in non-destructive testing (NDT) after it is transformed to Yb-169 by neutron irradiation in a nuclear reactor. For this application of Yb-168, the isotope purity of it should be enhanced to more than 15 % from the natural abundance of 0.135%. Our isotope separation system consists of laser system, Yb vapor generating system, and photoionized particle extraction system. For the laser system, we developed a diode-pumped solid-state laser of high-repetition rate and 3-color dye lasers. Yb vapor was generated by heating solid Yb sample resistively. The photo-ion produced by resonance ionization were extracted by a devised extractor. We produced enriched Yb metal more than 20 mg with the abundance of 25.8% of Yb-168 in the form of Yb(NO₃)s.

	70	Yb	1		7			가	
Yb- 168			가				Yb- 169 .		•
			1.	. Yb					
		168	170	17 1	172	173	174	176	
	(%)	0.135	3.03	14.31	21.82	16.13	31.38	12.73	
Yb-	169	7는 32		71	기 93 ke	eV			_
				~1	,			•	
									[1].
	Yb- 169			,	rb- 168	1			
가 (0.135 %					15 %	6		Yb- 168
	가	•	Yb-	168					
Yb_2O_3		,	(8 m	ng)		가			
		Yb-	169						
						Yb		Yb-	168
					Yb- 168				
					, Yb				
			•	Yb					
		,							

.

,

.

,

Yb- 168

2. Yb- 168

, [2].

Yb- 168 1 J=0 $4f^{14}$ $6s^{2}$ S_{0} 가 [3]. 가 가 555.648 nm $6s6p^{-3}P_{-1}$ (metastable state) (Triplet State) 가 가 , (Singlet State) 가 . $2.7 \times 10^{-30} \text{ C.m}$ 840 ns [4] 1 Yb- 168 7 Yb- 171 . 300 MHz 150 MHz 1 1.2 us Yb- 168 1.5 GHz Yb- 171 $. 6s 6p^{-3}P_1 - 4f^{13}6s^2 6p (7/2, 3/2)_2$ 2 $4.3 \times 10^{-31} \text{ C.m}$ 1 Yb- 168 52349.89 cm⁻¹ 가 . 가 가 [5]. 2 $6.7 \times 10^{-16} \text{ cm}^2$. 582.782 nm

1. Yb- 168

2. Yb- 168

Yb- 168

3.

•

•

.

(3) Yb

Yb 가 1097 °K

15 %

가

1 m , (STS) collector Yb- 168 collector 7

,

・ フト , sputtering フト フト , (comb) , フト - 5 kV Yb

3. Yb- 168

.

3, Yb, , Yb- 168, . 3 5W, 50g . Yb

Wave meter , Yb- 168 , TOF . TOF 5 80-92% .

. Yb- 168

1

,

2. Yb- 168

	168	170	17 1	172	173	174	176
(%)	25.3	1.9	28.5	11.3	9.7	16.8	6.5

Yb- 168	가 25.3%	0.135%	190	가
		(S)		[7]
	TT f	Tr İ		

$$S \equiv \frac{X_{168}^{f}}{1 - X_{168}^{f}} / \frac{X_{168}^{i}}{1 - X_{168}^{i}}$$

.

	(<i>X</i>	$_{168}^{f} =$,	$X_{\ 168}^{\ i}$ =	: 0.00135)		
			260					
가]	15-20%			Yb- 168	3		
		20.5 mg		•	7	0	,	,
		0.3 mg/h	•					
	70			20.5 mg	(Yb- 168			: 25.3
%)			,	2		,	7	Yb- 168

.

2. Yb- 168

.

.

.

,

,

4.

가 0.135% Yb- 168 . Yb

	Yb- 168		25.3%
0.135%	190	가	

,

		0.05	mA		C).3 mg/ł	ır
	70		20.5 mg		(Yb- 168	5	
: 25.3 %)			2mg/l	1			
	Yb- 168				Yb- 169		
	. 20%		Yb- 169 7	' ŀ			,
	Ir- 192		가		,	Yb-	168
		가가		,			
		,	Yb- 169		가		•
,							
,					Yb- 169	가	가

5.

- [1] Hisamichi Yamabayashi, Radioisotopes, 43, 296 (1994)
- [2] S.I. Yakovenko, Lasers and Particle Beams, 16, 541 (1998)
- [3] Hyunmin Park, Jongmin Lee, Jai hyung Lee, and Joon-sung Chang, Phys. Rev. A 53, 1751 (1996)
- [4] M. Gustavsson, H. Lundberg, L. Nikson, and S. Svanberg, J. Opt. Soc. Am. 69, 984 (1979).
- [5] B. B. Krynetskii, V. A. Mishin, and A. M. Prokhorov, Zh. Prik. Spektro. 54, 558 (1991).
 [J. Appl. Spectrosc. 54, 338 (1991)]
- [6] T. W. Haensch, Appl. Opt. 11, 895 (1972).
- [7] V. S. Letokhov, Laser Photoionization Spectroscopy (Academic Press, 1987).