injection Tube

The Introduction of an Injection Tube for the Device of the Flow Rate Reduction at the Lead-Bismuth Spallation Target

Abstract

A spallation target system is a key component to be developed for an accelerator driven system (ADS). It is known that a 15~25 MW spallation target is required for a practical ADS. The design of a 20 MW spallation target is very challenging because more than 60% of the beam power is deposited as heat in a small volume of the target system. In the present work, a numerical design study was performed to obtain the optimal design parameters for a 20 MW spallation target for a 1000 MW_{th} ADS. Especially, an injection tube was proposed for the reduction of the LBE flow rate at the target channel. The results of the present study show that a 30 cm wide proton beam with a uniform beam distribution should be adopted for the spallation target of a 20 MW power. When a simple LBE injection tube is employed, the LBE flow rate could be reduced by a factor of 2 without reducing the maximum allowable beam current.

가 가 , (Accelerator Driven System, ADS)7 1GeV . ADS 가 , . , ADS , Lead-Bismuth eutectic(LBE) . LBE 125°C 가 . LBE ferritic/martensite 9Cr-2WVTa , , , LBE LBE [1-4]. ADS $1000 MW_{th}$ 가 ADS 15-25MW , 20MW 60% .[5-9] Forschungszentrum Karlsruhe[10] MYRRHA project [11], X-ADS design[12] , 20MW LBE .[13] 10% , Pumping Power 가 Thermal Striping . , 가 Injection Tube . • Injection Tube 가 , 20MW LBE

,

1.

•

2.

2.1

(a) HYPER System

(b) Target System

1. Conception of the HYPER and Target system

(D_t) 0.66m,

,

340°C

,

(P) 16 , LBE (T)

(E) 1GeV

.

Parabolic, Uniform, offset parabolic

,

2. Outline of the target system

가 (D_b) 5cm . , LBE (V) , 가 2 . LBE (D_w) LBE (V) . (D_b) LBE (V)가 (D_w) (D_w) 35cm, 2.0mm . 2.2

						LBE	
	. LBE	가	가			가	
LBE		500	0°С,	2m/s		[16].	
	,	9Cr-2WVTa	600°C	LBE			
		600°C					
	9Cr-	2WVTa	600°C	480MPa	,	1/3	160MPa
		[17-18].				

1. Material data used for calculations

Pb-Bi (450°C)	Density (10180.8kg/m ³) Thermal Conductivity (14.2W/m·K) Thermal Expansion Coefficient (1.2×10 ⁻⁴ K ⁻¹) Viscosity (1.39E-3kg/m·s)		
9Cr-2WVTa (500°C)	Density (7580kg/m ³) Thermal Conductivity (30W/m·K) Thermal Expansion Coefficient (1.23×10 ⁻⁵ K ⁻¹) Young's Modulus (181GPa) Poisson Ratio (0.29)		

3. The Computational domain and boundary conditions

•

			turbulent Prand	ltl		CFX4.	4 가	
		. Inlet, outlet	, symmetry				,	
con	lucting solid		wall			가		, inlet
			가.				2	
			., 3					
		. LBE	(V)			2m/s		
4.								
	4.1							
			LBE]	LAHET		
		fittin	g		($\rho < D_b$)	LBE	(z)	
		2	r					
	1. Parabolic	$Q = C \frac{2I}{\pi P}$	$\frac{1}{4}(R_b^2-\rho^2)$		(unit: W/	′cm ³),		(1)
		π	b					
	2. Uniform	: Q = CI			(unit: W	⁷ /cm ³),		(2)
	, Q =		$(W/cm^3), I =$		(mA), R _b	=		(cm),
ρ=			(cm), C =					
	2	35cm,	2.0mm					
]	LBE						
	, , $\rho > R_b$							가
	•				$z > 60 \mathrm{cm}$			
			가 .	4				

	Window Diameter = 35cm				
Layer	Parabolic (C×10 ⁴)	Uniform, C			
Window	2.18	31.8			
0 <z<2cm< td=""><td>2.56</td><td>35.3</td></z<2cm<>	2.56	35.3			
2 <z<4< td=""><td>2.52</td><td>33.5</td></z<4<>	2.52	33.5			
4 <z<6< td=""><td>2.39</td><td>31.9</td></z<6<>	2.39	31.9			
6 <z<8< td=""><td>2.24</td><td>29.3</td></z<8<>	2.24	29.3			
8 <z<10< td=""><td>2.07</td><td>27.0</td></z<10<>	2.07	27.0			
10 <z<20< td=""><td>1.56</td><td>20.2</td></z<20<>	1.56	20.2			
20 <z<30< td=""><td>0.90</td><td>11.6</td></z<30<>	0.90	11.6			
30 <z<40< td=""><td>0.49</td><td>6.5</td></z<40<>	0.49	6.5			
40 <z<50< td=""><td>0.26</td><td>3.7</td></z<50<>	0.26	3.7			
50 <z<60< td=""><td>0.13</td><td>1.5</td></z<60<>	0.13	1.5			

2. '	The heat	generation	coefficient	of each	beam	current	density	functions
------	----------	------------	-------------	---------	------	---------	---------	-----------

•

4. Heat generation rate per unit proton beam current

5. Temperature distribution of the wetted surface at the beam window

Parabolic = 654 $^{\rm o}C$, Uniform = 505 $^{\rm o}C$

5

. LBE

4.2

	Para	$bolic = 736 ^{\circ}C$, Un	iform = 547 $^{\circ}C$. Uniform	
가	peak	, LBE	500	°C	
Paraboli	с	, Uniform			
,			,		
		Para	abolic		
	,				
	, Parabolic =	10.1mA, Uniform	= 19.3mA	• •	
	LBE	500 °C	. Uniform		Parabolic
	7	-	,		Uniform
가					
,		HYPER		(1)	9mA)
,		НҮ	PER	(45506	.26kg/s) 10%
4562kg/s	,		LI	BE (35)	6°C)가
LBE	(490°C)				
	Pumping power	가	, LBE		thermal
striping					
		50% ,			
	, Parab	olic = 5.4mA, Uni	iform = 10.1m	A HYPER	
12 Inicot	ion Tubo				
4. 5 IIIJect	ion tube			_1	
		,	LBE	가	,
		フト			HYPER
			- • •		
			Inject	ion Tube	
		Injection Tube	(Region 1)	LBE	Injection Tube
		(Region 2)			•
,	LBE			,	
LBE	가				
Injection	Tube		가		
		30cm	,	Injection Tub	e
	, Injection Tube	7 + z < 60	em	Injec	ction Tube
				, Injectior	n Tube

31cm, 10cm	가 .	, Injection Tube 2mm	가 .
		50%, Injection Tube 가	, LBE
0.655m/s , Inje	ction Tube 가	Region 1 Region 2 LI	BE
1.5m/s, 0.417m/s	· ,	20mA .	
6		Injection Tube	
Injection Tube 가	, LBE	Parabolic = 928 °C, Uniform =	= 657 °C
, Injection Tube 가	LBE	가 Parabolic = 652 °C, Unifor	$cm = 515 \ ^{o}C$.
Injection Tube		LBE	

6. The temperature distributions of the wetted surface of the beam window with or without the injection tube

Injection Tube		,			
	LBE	Region 1	Region 2	1.635m/s, 0.378	m/s
. LBE		2m	/s		7
Injection Tube				. Injection	n Tube
,		フトフト	. Injection Tube	,	
	Parabolic $=$ 1	10.3mA, Uniform =	19.6mA		
50%		;	የት	가	,
		가			
Injection	Tube	HYPER			,

(a) w/o injection tube (b) w/ injection tube

8. The peak temperatures and maximum velocities of the target system with injection tube height variation

9. Velocity profiles above 10cm from bottom of the beam window

10	Injection	Tube	
----	-----------	------	--

	LBE		2m/s		
,		HYPER		5%	•
가		Injection Tube	0.5m	, Region 1	Region

10. The peak temperatures and maximum LBE inlet velocities of the target system with injection tube height variation

			50%	, Injection Tube	
Uniform	110%			, Parabolic	125%
			Injection Tube	Parabolic	
	,	Parabolic	HYPER 가		

5.

		HYPER 가		(19mA)	
,		HYPER	10%		
	,				
Injection Tube					

31cm,	50cm	Injection Tube	50%	, Uniform
110%			, Parabolic	125%
, Injection Tube		HYPER		

,

Injection Tube

- 1. Buono, S. et al., 1998, Numerical Studies Related to the Design of the Beam Target of the Energy Amplifier Prototype, *Heavy Liquid Metal Conference '98*, Vol. 1, p.249.
- 2. Cheng, X. and Slessarev, I., Thermal-hydraulic Investigations on Liquid Metal Target System, *Nuclear Engineering and Design*, **202**, 297 (2000).
- 3. Gohar, Y. et al., 2001, Lead-Bismuth-Eutectic Spallation Neutron Source for Nuclear Transmuter, *AccApp/ADTTA '01*, Reno, Nevada, Nov. 11-15.
- 4. Tak, N. I. and Cheng, X., Thermal Hydraulic Design of the Active Part of the MEGAPIE Target, *Proceedings of the Korean Nuclear Society Spring Meeting*, Cheju, Korea (May 2001).
- 5. Gromov B. et al., 1998, Experience on Development of Molten Lead-Bismuth Target for Accelerator-Driven Systems, *HLMC* '98, Vol. 1., pp. 49-59.
- 6. Kim Y. H. et al., 2003, Optimisation of Height-to-Diameter Ratio for an Accelerator-Driven System, *Nuclear Science and Engineering*, Vol. 143, pp. 141-157.
- 7. Song, T. Y. and Tak, N. I., 2001, Optimal Design of HYPER Target System Based on the Thermal and Structural Analysis of Pb-Bi Spallation Target and Beam Window, *Annals of Nuclear Energy*.
- 8. Tak, N. I. et al., 2001, Numerical Studies on Thermal Hydraulics of HYPER target, *AccApp/ADTTA '01*, Reno, Nevada, Nov. 11-15.
- Cho, C. H. et al., 2002, Optimum Design of Beam Window's Diameter and Thickness of HYPER Target System, *Proc. KNS Autumn Meeting*, Oct. 24-25.
- 10. Cheng, X. et al., Thermal hydarulic Design of an ADS with Three Spallation Targets, *Proc. ADTTA '99 Conference*, Prague (June 1999).
- 11. Tichelen, K. V. et al., 1999, MYRRHA Project, a Windowless ADS Design, *Proc. ADTTA '99*, Prague, Czech Republic.
- 12. ANSALDO, 2001, XADS Pb-Bi Cooled Experimental Accelerator Driven System Reference Configuration, Summary Report.
- Cho, C. H. et al., Design of Lead-Bismuth Spallation Target with Hemi-Spherical Beam Window Based on Thermal-Hydraulic Analyses, *Proc. KNS Spring Meeting*, May. 29-30
- WON S. PARK et al., "Transmutation Technology Development," Korea Atomic Research Institute, KAERI/RR-2117/2000 (2000).

- 15. Park, W. S. et al., 1997, Development of Nuclear Transmutation Technology, KAERI/RR-1702/96.
- 16. Yachmenyov, G. S. et al., 1999, Problems of Structural Materials' Corrosion in Lead-Bismuth Collant, Proceedings of Heavy Liquid Metal Coolants in Nuclear Technology, Vol1. p133-140.
- 17. Klueh, R. L., 1996, Experience with Ferritic/martensitic Steels for Fusion Application, Proceedings of International Workshop on Spallation Materials, 3.3-3.26.
- 18. Rust, J. H., 1979, Nuclear Power Plant Engineering, Haralson Publishing Company, p385.
- 19. Prael, R. E. et al., 1989, User Guide to LCS : The LAHET Code System, LA-UR-89-3014.