Comparison of Neutron Cross Sections for Selected Fission Products and Isotopic Composition Analyses with Burnup

Abstract

The neutron absorption cross sections for 18 fission products evaluated within the framework of the KAERI-BNL international collaboration have been compared with the ENDF/B-VI release 7. Also, the influence of the new evaluations on isotopic compositions of the fission products as a function of burnup has been analyzed through the OECD/NEA burnup credit criticality benchmarks (Phase 1B) and the LWR/Pu recycling benchmarks. These calculations were performed by WIMSD-5B with the 69 group libraries prepared from three evaluated nuclear data libraries: ENDF/B-VI.7, ENDF/B-VI.8 including new evaluations in resonance region covering thermal region, and ENDF/B-VII expected including those in upper resonance region up to 20 MeV. For Xe-131, the composition calculated with ENDF/B-VI.8 shows maximum difference of 4.78% compared to ENDF/B-VI.7. However, the isotopic compositions of all fission products calculated with ENDF/B-VII shows no differences compared to ENDF/B-VI.7.

1.

,

가 Brookhaven (Brookhaven National Laboratory, BNL) National Nuclear Data Center (NNDC) $20 \sim 30$ ENDF/B-VI .1,2,3 가 가 (Pr-141 18) 가 ENDF/B-VI.7 . , 가 WIMS-D Library Update 5 Project (WLUP)⁴ WIMSD-5B 가 가 2 WIMS-D , .3 4 . , 2. 가 가 2.1. 가 가 가 가 ENDF/B-VI 가 가 1970 ~ 80 , • 가 BNL NNDC 1998 , 19 가 1 19 가 ENDF/B-VI • 가 . 2000 1 19 Cs-133, Sm-149, Eu-153 3 16

,

,

가

,¹ 가 가가 ENDF/B-VI.8 2 가 19 20 ,2,3 MeV 가가 가 2005 가 ENDF/B-VII , 2 Tc-99, Eu-153, Gd-157 3 BNL 가 2.2. WIMS-D WIMSD-5B . 가 (IAEA) WIMS-D Library Update Project (WLUP)7 1990 2001 WLUP 69 WIMSD-5B 가 ENDF/B-VI.8 가 18 ENDF/B-VI.7 가 NJOY99.81⁶ ENDF/B-VII WIMS-D 2 69 ENDF/B-VI.7, ENDF/B-VI.8, ENDF/B-VII 1 ~ 18 18 69 ENDF/B-VI.7 ENDF/B-VII ENDF/B-VI.8 (ratio) ENDF/B-VI.7 ENDF/B-VI.8 (lower) , ENDF/B-VI.8 ENDF/B-VII . 가 100 eV WIMS-D 가 , Mo-95, Tc-99, Rh-103, Pd-105, Xe-131, Nd-145, Sm-147 ENDF/B-VI.8 ENDF/B-VI.7 20 ~ 50% , Mo-95, Rh-103, Sm-147 20% . barns , Tc-99, Pd-105, Xe-131, Nd-145 barns 1500 , Xe-131 15% 26 . 가 barns

3

3.

WLUP	WIMS-D	
OECD/NEA	LWR-Pu	WIMSD-5B
3.1. OECD/NEA Burnup Crea	lit Criticality Benchmark (Phase 1B)	
	UO ₂ pin cell	
GWd/tU 3	,	27.35, 37.12, 44.34
ENDF/B-VI.7 ENDF/B-V	I.8 71	
Nd-145 44.34 GWd/tU .	ENDF/B-VI.8 ENDF/B-VI.7 7	1.8% Xe-131
19 ENDF/B-VI.7	ENDF/B· (%)	-VI.8 Tc-99, Pd-105,
Xe-131, Nd-145 , Xe-131 44.34 GW	d/tU -4.45% . フト フト	
3.2. LWR-Pu Recycling Bench	mark	
plutonium 기 50 GWd/tU .	MOX pin cell , highly degraded plutonium . 가	normal PWR recycled
19 -4.78% 기· 기·	, OECD/NEA . , Tc-99, Pd-105, Xe-131, Nd-145 . , Xe-131 normal PWR recycl , 7├ OECD/NEA 	ed Pu A

4.

가"

- 1. S.Y. Oh and J.H. Chang, "Neutron Cross Section Evaluations of Fission Products below the Fast Energy Region," BNL-NCS-67469 (KAERI/TR-1511/2000), Brookhaven National Laboratory (2000).
- 2. Y.D. Lee and J.H. Chang, "Neutron Cross Section Evaluation on Mo-95, Tc-99, Ru-101 and Rh-103 in the Fast Energy Region," J. of the Korean Nuclear Society, **34**, 533 (2002).
- 3. Y.D. Lee and J.H. Chang, "Evaluation of Neutron Cross Sections for Eu-153, Gd-155 and Gd-157," J. of the Korean Nuclear Society, **35**, 35 (2003).
- 4. "WIMS-D Library Updata: Final Report of a Co-Ordinated Research Project," IAEA-DOC-DRAFT, IAEA (2002).
- 5. J.R. Askew, F.J. Fayers, and P.B. Kemshell, "A General Description of the Lattice Code WIMS," J. British Nuclear Energy Society, **5**, 564 (1966).
- 6. R.E. MacFarlane and D.W. Muir, "The NJOY Nuclear Data Processing System, Version 91," LA-12740-M, Los Alamos National Laboratory (1994).

Fission Product	ENDF/B-VI	ENDF/B-VI.7	ENDF/B-VI.8	ENDF/B-VII
	Evaluation Date	(2000)	(2001)	(to be released)
42-Mo-95	1000		Thermal ~	Upper Resonance ~
	1990	-	Resonance (MF=2)	Fast
43-Tc-99	1978	-	Thermal ~	Upper Resonance ~
			Resonance (MF=2)	Fast
44-Ru-101	1980	-	Thermal ~	Upper Resonance ~
			Resonance (MF=2)	Fast
45-Rh-103	1978	-	Thermal ~	Upper Resonance ~
			Resonance (MF=2)	Fast
46 D1 105	1989	-	Thermal ~	Upper Resonance ~
40-Pd-105			Resonance (MF=2)	Fast
47-Ag-109	1983		Thermal ~	Upper Resonance ~
		-	Resonance (MF=2)	Fast
54 X 121	1079		Thermal ~	Upper Resonance ~
J4-AC-151	1978	-	Resonance (MF=2)	Fast
55 G 122	1070	Re-evaluation		Upper Resonance ~
55-CS-155	1978		-	Fast
59-Pr-141	1980	-	Thermal ~	Upper Resonance ~
			Resonance (MF=2)	Fast
60-Nd-143	1974	-	Thermal ~	Upper Resonance ~
			Resonance (MF=2)	Fast
60 NJ 145	1980	-	Thermal ~	Upper Resonance ~
00-1NU-143			Resonance (MF=2)	Fast
62-Sm-147	1988	-	Thermal ~	Upper Resonance ~
			Resonance (MF=2)	Fast
62 Sm 140	1078	Re-evaluation		Upper Resonance ~
02-5111-149	1970	IXE-evaluation	-	Fast
62-Sm-150	1980	-	Thermal ~	Upper Resonance ~
			Resonance (MF=2)	Fast
62-Sm-151	1989	-	Thermal ~	Upper Resonance ~
			Resonance (MF=2)	Fast
62-Sm-152	1980	-	Thermal ~	Upper Resonance ~
			Resonance (MF=2)	Fast
63-Eu-153	1986	Re-evaluation		Upper Resonance ~
			-	Fast
64-Gd-155	1977	-	Thermal ~	Upper Resonance ~
			Resonance (MF=2)	Fast
64-Gd-157	1977	-	Thermal ~	Upper Resonance ~
			Resonance (MF=2)	Fast

Table 1. List of Selected Fission Product Nuclides

Fast Groups		Resonance Groups		Thermal Groups	
G	Upper Bound	G	Upper Bound	G	Upper Bound
Group	(eV)	Group	(eV)	Group	(eV)
1	1.0000E+07	15	9.1180E+03	28	4.0000E+00
2	6.0655E+06	16	5.5300E+03	29	3.3000E+00
3	3.6790E+06	17	3.5191E+03	30	2.6000E+00
4	2.2310E+06	18	2.2394E+03	31	2.1000E+00
5	1.3530E+06	19	1.4251E+03	32	1.5000E+00
6	8.2100E+05	20	9.0690E+02	33	1.3000E+00
7	5.0000E+05	21	3.6726E+02	34	1.1500E+00
8	3.0250E+05	22	1.4873E+02	35	1.1230E+00
9	1.8300E+05	23	7.5501E+01	36	1.0970E+00
10	1.1100E+05	24	4.8052E+01	37	1.0710E+00
11	6.7340E+04	25	2.7700E+01	38	1.0450E+00
12	4.0850E+04	26	1.5968E+01	39	1.0200E+00
13	2.4780E+04	27	9.8770E+00	40	9.9600E-01
14	1.5030E+04			41	9.7200E-01
				42	9.5000E-01
				43	9.1000E-01
				44	8.5000E-01
				45	7.8000E-01
				46	6.2500E-01
				47	5.0000E-01
				48	4.0000E-01
				49	3.5000E-01
				50	3.2000E-01
				51	3.0000E-01
				52	2.8000E-01
				53	2.5000E-01
				54	2.2000E-01
				55	1.8000E-01
				56	1.4000E-01
				57	1.0000E-01
				58	8.0000E-02
				59	6.7000E-02
				60	5.8000E-02
				61	5.0000E-02
				62	4.2000E-02
				63	3.5000E-02
				64	3.0000E-02
				65	2.5000E-02
				66	2.0000E-02
				67	1.5000E-02
				68	1.0000E-02
				69	5.0000E-03
					1.0000E-05

Table 2. 69 Energy Group Structure

Figure 1. Absorption Cross Section of Mo-95

Figure 2. Absorption Cross Section of Tc-99

Figure 4. Absorption Cross Section of Rh-103

Figure 6. Absorption Cross Section of Ag-109

Figure 3. Absorption Cross Section of Ru-101

Figure 5. Absorption Cross Section of Pd-105

Figure 7. Absorption Cross Section of Xe-131

Figure 8. Absorption Cross Section of Cs-133

Figure 9. Absorption Cross Section of Nd-143

Figure 11. Absorption Cross Section of Sm-147

Figure 10. Absorption Cross Section of Nd-145

Figure 12. Absorption Cross Section of Sm-149

Figure 13. Absorption Cross Section of Sm-150

Figure 14. Absorption Cross Section of Sm-151

Figure 15. Absorption Cross Section of Sm-152

Figure 17. Absorption Cross Section of Gd-155

Figure 16. Absorption Cross Section of Eu-153

Figure 18. Absorption Cross Section of Gd-157

Figure 19. Relative Difference of ENDF/B-VI.7 to ENDF/B-VI.8 in Isotopic Compositions