3-Pin FTL

Thermal-Stress Analysis of 3-Pin FTL IPS Penetration Structure

Abstract

3-Pin Fuel Test Loop (FTL) composing the In-pile test section (IPS) and Out-pile system (OPS) has been developed for fuel rod irradiation test in HANARO and designed 17.5MPa, 350 . Pipes installed in the pipe gallary connect the IPS and OPS are designed as a break exempt area and they have been designed according to the ASME code SC-1. Penetration pipe is composed of PCW pipe, MCW pipe and connection parts

In this study the penetration pipes in the pipe gallery composing the outer pipe that holds room temperature and the main cooling water pipe that holds transient temperature from 30 to 312 has been studied for its thermal-stress behavior in case of normal operation of FTL. Furthermore these results are applied to the ASME Section NB code. Consequently it is concluded that the design of penetration pipe was in reasonable agreement with those code.

2004

PCW cooling water zone (30°C ~ 45°C)

MCW Pipe

2 (4) 1 가 • 1.68m, 1.54m, 2m 73cm, 53cm, 2.5m . (DCAX6) (DCAX8) ABAQUS6.4-1 1320 8-DCAX8, 44 6 DCAX6, 5200 CAX8, CAX6 .

2.2

•

가 PCW .(5) 30 30 45 가 가 1.6kg/s 17.5MPa , 5 30 312 가 5 30 4 1 . Table 1 PCW .⁽¹⁾ PCW Table 2 MCW 가 (Y-) • PCW . Primary stress Primary+Secondary stress

.

Table 1. Boundary conditions for heat transfer analysis

Location	Sink Temperature	Heat transfer coefficient		
Air surface	30	5 W/m ² K		
PCW Pipe	30	955.3 W/m ² K		
		30	955.3 W/m ² K	
MCW Pipe	30	312	7263.6 W/m ² K	

Table 2. Loads and boundary condition for stress analysis

Load case	Load	Value		
Boundary condition	Bottom of MCW Pipe	Fixed in axial direction		
boundary condition	Concrete part of PCW Pipe	Fixed in all direction		
Initial condition	Initial temperature - whole model	30		
Pre-load	Pressure in MCW Pipe (5 hours)	0 MPa ~ 17.5 MPa		
Pressure	Pressure in MCW Pipe	17.5 MPa		
Flessule	(Normal operation)	17.5 MFa		
	Pressure in MCW Pipe	17.5 MPa		
	(Normal operation)	17.5 MFa		
Pressure+Thermal	Temperature in PCW Pipe	30 ~ 45 ~ 30		
FTessure+merman	(Normal operation)	30 ~ 43 ~ 30		
	Temperature in MCW Pipe	30 ~ 312 ~ 30		
	(Normal operation)	30 ~ 312 ~ 30		

2.3

PCW	MCW		316
		Table 3	. ASME Secton
	가	1%	
가	. Table 4		

Table 3 Mechanical porperties of 316 stainless steel

Young's modulus (GPa)	Yield stress (MPa)	Possion's ratio	
	124		
193	179	0.3	
	191		

Table 4 Thermal porperties of 316 stainless steel

Temperature	Conductivity	Density	Specific heat
()	(k)	(kg/m^3)	(c)
30	13.655	7963.54	472.33
150	15.519	7908.18	509.70
312	18.193	7938.98	547.17

З.

3.1

.

2

307

PCW

.

132 69

289

3.2

3.2.1

3 Inside tresca stress

4 Outside tresca stress

3.2.1

7 Deformed shape of penetration pipe

8 Displacement of node 22

9 Inside tresca stress

+

12

10 Outside tresca stress

S22, S33)

(\$33) 7 11 208 MPa (\$11) (\$33)

11 Stress linearization along Vertical line

(S11,

4. ASME Section , Div , NB 가

ASME Section	NB		(5)		Tresca
		Table	2		

.

.

Table 2 Allowable stress intensities

Stress Intensity	Tabulated value	316 Stainless steel		
Design stress	S _m	117 MPa		
Primary stress	1.5×S _m	175 MPa		
Primary + secondary stress	$3 \times S_m$	351 MPa		

.

MCW	· ,
58 MPa .	
	,
175 MPa	43 MPa
ITS WFa	3S _m
	(peak stress)
. +	265 MPa
3S _m	가 .

5.

	3-Pin FTL						
	ASME Section	NB		가			
			43MPa	$1.5 \times S_m$,
					265	MPa	$3 \times S_m$
•					,		

가

.

- Korea Atomic Energy Research Institute, HANARO Safety Analysis Report, KAERI/ TR-710/96, 1996.
- [2] B. S. Sim et, Design of the Fuel Test Loop in the HANARO, Proceedings of 6th IGORR, 1998.
- [3] ASME Boiler and Pressure Vessel Code, Section III, Appendix 1, 1998.
- [4] MCW Supply and CCW Suction Isometric Drawing, FL-200-PD S002, Rev. 3, 1994
- [5] D. Y. Chi, "Heat transfer in the In-Pile Test Section and Penetration Region of 3-Pin Fuel Test Loop", KAERI/ TR-2624/2003, 2003.