Management of Radioactive Organic Liquid Waste

0

150

1978 2003

 8 m^3 , 17m^3

•

Abstract

The amount of radioactive organic liquid wastes generated from 1978 to 2003 in KAERI(Korea Atomic Energy Research Institute) were 8 m³ of high organic content waste and 17 m³ of low organic content waste respectively. Technical reviews of the radioactive organic wastes generated in KAERI and literature survey of the organic waste treatment technologies were performed in order to make plans for the safe treatment of the wastes. Treatment methods of radioactive organic wastes will be settled according to the organic component and the radionuclides included

						TBP	
CCIA Cycle	TBP, D	, 2003 odecane,		8m ³	17m³		EDTA
CCI4, Cyclo	mexane 가	Cs-137, C	:0-60				
	. ,	00 101, 0	.0 00	가 가	-		
가			-1				,
가 가			가	•			
71			,	,			
			,	,			
							가
2 3		0 407		-			
8m ³		Cs - 137			. Cs - 1	137	
		17m ³			. 03	107	
가							
		II.					
			가				
				25			
	30						
1978	2003		8,545	가			TDD
dodecane	,		가 가	cyclobe	vana (CCI ₄ , ED	TBP
douctaile			,	Сустопе	, varie, C	JO14, LD	I 7
8,545					1	1	•
92%가	/	, , твг	P/dodecane		·		

. 8% cyclohexane, CCI₄,

가

EDTA,

Table 1. Properties of Radioactive Organic Wastes Generated in KAERI

		()	%		%	
	(U)	2,117	24.77			
/	Cs - 137	1,420	16.62	4,016.1	47.00	
/	Co - 60	223.1	2.61	4,010.1		
		256	3.00			
	(U)	2,090	24.46	2,090	24.46	
	(U)	1,687	19.74		20.21	
TBP/Dodecane	Cs - 137	20	0.23	1,727		
		20	0.23			
	(U)	407	4.76		8.33	
	Cs - 137	70	0.82	712		
	Co - 60	20	0.23	712		
		215	2.52			
	(U)	6,301	73.74			
	Cs - 137	1,510	17.67	8,545.1	100	
	Co - 60	243.1	2.84	0,040.1	100	
		491	5.75			

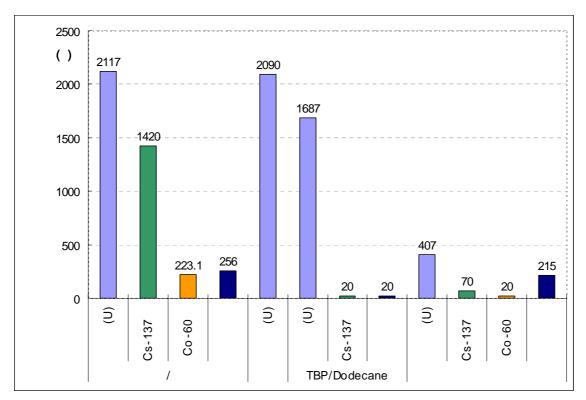


Fig. 1. Ratios of Radioactive Nuclides in Each Organic Component

1990

 $17m^3$

TBP

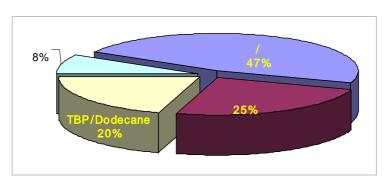


Fig. 2 Ratios of Each Organic Coponents in The Organic Waste

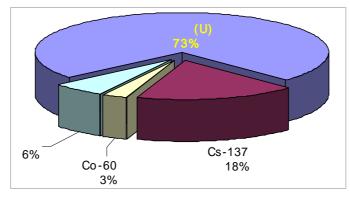


Fig. 3 Ratios of Each Radionuclide Elements in The Organic Waste

Ш.

700 1,100 가 가 가 가 1. 가 (OH•) H_2O (OH•) CO₂, H₂O UV/Ozone 가 $O_3 + H_2O + h$ $O_2 + H_2O_2$ $O_3 + H_2O + h$ $O_2 + 2OH$ HO_2^- HO₂ 가 ozonide (O_3^-) ozonide HO_3 (OH·) 가 [23]. $O_3 + H_2O + h \qquad H_2O_2 + O_2$ $H_2O_2 + h$ 20H· $Ka = 10^{-11.6}$ $H_2O_2 HO_2^- + H^+$ $O_3 + HO_2$ $O_3 + HO_2$ $HO_2 O_2^- + H^+$ $O_3 + O_2$ $O_3 + O_2$ $O_3^- + H^+ HO_3$ HO_3 $OH \cdot + O_2$

```
OH \cdot + H_2O_2 \qquad H_2O + HO_2 \cdot
        OH \cdot + O_3 \qquad O_2 + HO_2 \cdot
        20H· H<sub>2</sub>O<sub>2</sub>
        2HO_2 \cdot H_2O_2 + O_2
        H_2O + HO_2 + O_2 H_2O_2 + O_2 + OH
                                                                     H_2O_2
H_2O_2
           O_3
                                               . H<sub>2</sub>O<sub>2</sub>
                                                     가
220nm
                          254nm
                                                                                              가
                      H<sub>2</sub>O<sub>2</sub> 가
                                           . O<sub>3</sub>
                                                                     O_3
254nm
            H_2O_2 170
                                                                                        70ppm
UV/H_2O_2
 UV/H_2O_2
                                     O_3
                                                           O_3
                                                                                            ОН
                                                                     가
                                       H_2O_2
가 . H<sub>2</sub>O<sub>2</sub>
                                                                                ОН
        H_2O_2 + h H^+ + HO_2^-
        H_2O_2 + h
                     H_2 + O_2
        H_2O_2 + h
                     H_2O + O
        H_2O_2 + h
                        20H-
                                            (quantum yield) 0.01
                                                                           가
        2
                   ОН
                                                                     1
                                                                                            ОН
                                                    UV
                                                                              ОН
                                                CO<sub>2</sub> H<sub>2</sub>O
                                                                              . UV
                                        (19.6 M<sup>-1</sup>cm<sup>-1</sup>)가 O<sub>3</sub>
H_2O_2
                 H_2O_2
                                                                                 (3,000 M^{-})
<sup>1</sup>cm<sup>-1</sup>)
                                                                 O_3
 UV/TiO<sub>2</sub>
                                                                                              가
                                 ОΗ٠
가 . UV/O_3, UV/H_2O_2 OH· 10^{-12}~M
```

10⁻⁹ OH·가 TiO₂ UV TiO_2 TIO_2 400 nm. , Valance Band Conduction Band (electron - hole pair) , conduction band(e cb) 가 valance band(h⁺_{vb}) positive hole Conduction Band (e Reduction OH• + H* (h⁺ (h*) Valance Band Oxidation OH+ + Organics TiO₂ H₂O CO2+H2O H_2O Valance Band hole OH. ОΗ٠ $h^+_{vb} + H_2O(ads.)$ OH·+ H^+ $h^{+}_{vb} + OH^{-}(sur.)$ ОΗ٠ Conduction band H_2O OH $e_{cb} + O_2 O_2$ $2O_2^- + H_2O$ $2OH_1 + 2OH_2^- + O_2$ 가 가 UV 가 TiO₂ "electron - hole" 가 "electron hole"

가

, , ammonium persulfate,

(0.003 M) 가

positive hole OH·가 가 Conduction Band $(, Hg^{2+} + 2e^{-} Hg^{0}).$ TiO₂ Conduction Band 가 가 가 2. Fenton H_2O_2 Fe^{2+} Fenton Fenton 1894 가 Fe²⁺ $Fe^{2+} + H_2O_2 Fe^{3+} + OH^- + OH^ OH + H_2O_2 + H_2O + HOO_1$ $HOO \cdot + H_2O_2$ $O_2 + H_2O + OH \cdot$ $OH \cdot + Fe^{2+}$ $Fe^{3+} + OH^{-}$ $Fe^{3+} + H_2O_2 + H^+ + Fe^{2+} + HOO_1$ $Fe^{3+} + HOO \cdot Fe^{2+} O_2 + H^+$ ОΗ٠ CO_2 H_2O . $OH \cdot + organics$ $CO_2 + H_2O$

pH 가 3-5 가 가 pH 가 Fe가 Fe(OH)₃ H₂O₂가 Fe 3 - 15 mg/ . 가 <25 - 50 mg/ Fe: H_2O_2 1 : 5 - 25 wt/wt (10 - 24).. 가 40-50 가 가 가 가 H₂O₂ 가 가 가 H₂O₂ 가 . 20 - 40 .

> 가 (Fe(OH)₃)가 UV .

가 .

3.

 $2HNO_2 + O_2$ $2HNO_3$ (

 $NO_3^- + 3H^- + 2e^- + HNO_2 + H_2O$ ()

.

4.

5.								DC	D	
	oil		60 90%				•	PC	В	
			가							
6.	·	가	가					5,000 1	5,000	•
	가 99.9999%	가								
7.		1980 374 , 22 MPa				가 , 400	650	, 25.3 M	IPa	
	가	(I	ohase)							
	99.9999% 가				600	650	,		5	
8.								가		
	·	:1		2		1,200		(300	800)

가

99%

가

가 . 1 ton 335 kW

9.

가

beam X- - 가 가

.

2 .

Table 2. Summary of Organic Waste Treatment Technologies

	1	· · · · · · · · · · · · · · · · · · ·	
	/		
	40 ,	99%	- ,
			-
Fenton	20 40	99%	- ,
	0.0	00.00%	-
	80	99.99%	-
			-
	150 325	95 99%	- 가
	300 3,00	0psi :70%	-
		(PCB)	-
			- 10%
	,	60 90%	-
			-
		99.9999%	-
	400 650	00.00009/	-
	400 650	99.9999%	
			- ,
	1 :300	99%	- ,
	80		-
	2 :1,20	00	

Cs - 137

3

, , TBP, Dodecane,

Cs - 137 . Cs - 137

Fenton (UV)

.

Table 3. Treatment Methods of Organic Waste According to the Component

		가	
/		-	-
(4,016)		-	
TBP/Dodecane		-	-
(1,727)		-	
		-	
		-	
(10%)		-	-
(2,090)		-	
		-	
		- Fenton	
(712)	Cs - 137	-	- Fenton
- cyclohexane, CCI ₄ ,	Co - 60	-	- UV/Fenton
EDTA,		-	
		-	
		- Fenton	
	Cs - 137	-	-
(17m ³)	Co - 60	-	(UV/O3/H2O2,
	U,	-	UV/TiO2)
		(UV/O3/H2O2,	- Fenton
		UV/TiO2)	
		- Fenton	

. TBP dodecane NaCl

17m³ 5%

가

٧.

TBP/Dodecane ,

Reference

1. Schwinkendorf, W.E., McFee, J., Nenninger, L.L., Fadullon, F.S., "Alternatives to Incineration, Technical Area Status Report", DOE/MWIP - 26, U.S.

Department of Energy, Office of Technology Development, Washington, D.C., 1995.

- 2. Huang, C.P., C. Dong, and Z. Tang, "Advanced Chemical Oxidation: Its Present Role and Potential Future Hazardous Waste Treatment," Waste Management, Vol. 13, pp. 361 377, 1993.
- 3. Copa, W.M. and Gitchel, W.B., "Wet Oxidation" in Standard Handbook of Hazardous Waste Treatment and Disposal, H.M. Freeman,ed., Mcgraw Hill Book Co., New York, 1989.
- 4. X. Jian, T. Wu, G. Yun, "A Study of Wet Catalytic Oxidation of Radioactive Spent Ion Exchange Resin by Hydrogen Peroxide", Nucl. Safety, Vol.37, NO.2, April June, PP. 149 157, 1996
- 5. Surma, J.E., et al., "Catalyzed Electrochemical Oxidation (CEO) of Rocky Flats Contaminated Combustible Material,"PNL 9974, Pacific Northwest Laboratory, Richland, WA, August 1994.
- 6. Hoigne, J. and Bader, H. "The Role of Hydroxyl Radical Reactions in Ozonation Processes in Aqueous Solutions", Water Resources 10:377 (1976)
- 7. Prairie, M.R., et al., "An Investigation of TiO2 Photocatalysis for the Treatment of Water Contaminated with Metals and Organic Chemicals," Environmental Science and Technology, Vol. 27, No.9, pp.1778 1782, 1993.
- 8. Bramlette, T.T., et al., "Destruction of DOE/DP Surrogate Wastes with Supercritical Water Oxidation Technology," SAND90 8229, Sandia National Laboratories, Livermore, CA, November 1990.