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AABBSSTTRRAACCTT  

 A modified reconstruction algorithm has been developed for an X-ray luggage inspection 
modality based on 90˚ Compton scattering imaging. Incident photon energy E0 of 122.1keV was used in 
simulated experiments with MCNP for 5x5x5 samples and the 90˚ Compton scattered photon energy E1 
is 98.6keV. In the µt(E1) reconstruction calculation the least-squares solution was computed through 
Householder transformations applied in blocked form for the full µt(E1) over-determined system 
equations of the side detector responses in the simulated experiments. In the µt(E0) µc(E0) reconstruction 
calculation, instead of µt(E0) = µc(E0) approximation which does not hold true for the source energy of 
this paper, the semi-empirical formula µt(E0) = d*µc(E0)+e* µt(E1) was used and the least-squares 
solution was computed with the conjugate gradient method for µt(E0) µc(E0) system equations of the side 
and transmission detector responses and the semi-empirical formulae. Self attenuation correction factors 
in a simple form were applied in an iterative manner until the factors and reconstruction output are 
converged. The maximum errors of the reconstruction calculation for a sample with aluminum core and 
polyethylene matrix were –2.9% for µt(E0), -1.0% for µt(E1), and 1.9% for µc(E0), showing good 
agreements with theoretical values. The maximum errors for the case with steel core and polyethylene 
matrix were –10.2% for µt(E0), -3.3% for µt(E1), and 20.3% for µc(E0), indicating that this case with 3 cm 
steel rod would be a limiting case for the penetration ability of 122.1keV incident photons used in the 
inspection modality. 

1.  Introduction 

 Since the tragic collapse of World Trade Center in New York on September 11, 2001 caused by two 
hijacked airplanes security concerns on all aspects have been much intensified than before. Many 
already developed systems of security inspection, including typical X-ray luggage scans, have been 
widely adapted at many ports and security check points. New inspection modalities based on new 
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technologies are on high demand to make up for some weak points in the currently available inspection 
systems, for example, lack of detailed material information other than attenuation in typical X-ray 
luggage scans.  
 One of the new modalities, based on X-ray Compton scattering imaging, is under development 1,2,4). 
Inspection system based on X-ray Compton scattering imaging does not require costly rotation system as 
in conventional CT system. And with more theoretical development in the future there are possibilities 
of local material identification. Our research group developed a reconstruction algorithm for 661keV 
source photon 4) and has focused on a modified reconstruction algorithm for 122keV source photons in 
this paper.   
 With the adoption of high energy x-rays like 662keV source, the reconstruction can be done easily 
with the help of the assumption of µt(E0) = µc(E0) but, on the other side, the reconstruction output, µt(E0), 
µc(E0) and µt(E1) all are closely related to each other and in essence only material density is revealed 
because in this energy range Compton scattering is the dominant reaction of all. With the adoption of 
lower energy x-rays like 122keV source, more information is included in the reconstruction output since 
in this energy range Compton scattering and photoelectric absorption are competing with each other and 
there are possibilities of identifying the material. 
 Since the assumption µt(E0) = µc(E0) does not hold true any more for lowered energy sources like 
122keV photons, a new semi-empirical formula µt(E0) = d*µc(E0)+e* µt(E1) has been developed and 
used in the reconstruction algorithm. And also for the increased self-attenuations in reacting volumes 
more complex self attenuation correction models than simple half-thickness model has been developed 
for incoming photons from the source and outgoing photons to the side detectors. MCNP simulated 
experiments were performed to provide detector responses to the reconstruction algorithm. The final 
reconstruction output µt(E0), µc(E0) and µt(E1) were compared with theoretical values. 

2. Materials and Method 

2.1 Compton Scattering Imaging System 

 A usual Compton scattering imaging system is made up with a collimated photon source, a 
transmission detector and four side detectors. For each node or voxel in a sample, five detector responses 
(one transmission and four sides) are obtained from experiments or simulated experiments as in this 
paper. The detector responses are post-processed in a reconstruction program to provide material 
information of each node, which are µt(E0), µc(E0) and µt(E1), or in other notations µ, µc and µ’. 
 In the 90˚ Compton scattering system a sample or an object can be considered as NX×NY×NZ 
voxels, where NX, NY, and NZ are the number of voxels along the direction of X, Y, and Z, respectively, 
as shown in Fig.1. When a beam of gamma rays is incident on the object, the intensities of the 
transmission and scattering radiations at the angle of 90˚ are measured at the same time by a 
transmission detector (Tr) and 4 scattering detector arrays which are indicated conveniently as top (T), 
bottom (B), left (L) and right (R). The incident beam is moved in a plane parallel with the cross section 
of the object, from left to right and from top to bottom with steps equal to the size of a voxel until the 
entire one side of the object is exposed. For simplification, the attenuation effects of gamma rays in the 
air before coming into the object and after going out from the object to the detector are neglected. 
Assuming the scattering is occurred at the center of the voxel (i, j, k), where (i, j, k) indicates the voxel 
located at i-th, j-th and k-th along the direction of X, Y, and Z, respectively, the single scattered response 
of a left detector Li,j,k can be expressed as 1,2) 
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where µi,j,k and µ’i,j,k (or, µt(E0) and µt(E1)) are the total linear attenuation coefficients of the voxel (i,j,k) 
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at the incident and the scattering energies and µC,i,j,k is the Compton scattering attenuation µc(E0) of the 
voxel. ∆xin and ∆xout are the sizes of the voxel corresponding to the direction of the incident and 
scattering pathway, respectively. L0 is a system constant depending the source intensity, the detector 
efficiency and the system geometry. Similar expressions can be written for the responses of right, top 
and bottom detectors. The response of the transmission detector can be written in the similar form as 
follows 

 ( )1
exp

0
0 NXin

Tr Tr xjk mjkmjk µ
−

∑= −∆
=

                    (2) 

 The attenuation coefficients are considered as unknowns, hence there are three unknowns in Eq.(1) 
and 3×NX×NY×NZ unknowns for the whole object. The image reconstruction problem is an inverse 
problem in which three unknowns µt(E0), µt(E1) and µc(E0) in Eq.(1) for individual voxels are solved 
from 4×NX×NY×NZ scattering detector measurements and NY×NZ transmission detector  
measurements. These unknowns are physically related but they can be independently calculated in 
different process. Based on the fact that all scattering measurements to a particular voxel have the same 
pre-scattering attenuation and the ratio of any two scattering measurements provides an estimate of the 
post-scattering attenuation, therefore µt(E1) can be directly obtained from ratios of any pair of scattering 
measurements using linear algebraic method for an over-determined system. Knowing µt(E1), Eq.(1) 
becomes an equation of two variables µt(E0) and µc(E0) which can be solved by using a nonlinear 
iterative process with the transmission response provided by Eq.(2). For getting minimized error 
propagation and the best quality of the images, the least squares method is applied in the reconstruction 
process. 

2.2 Simulated Experiments with MCNP 

 In order to obtain radiation responses of detectors without experiment measurements for 
demonstrating the reconstruction algorithm, a small object is used in MCNP simulation. The object 
consists of 5×5×5 voxels, each voxel is a 1×1×1cm cube. Core materials with the size of 3×1×1 voxels 
are located in the center of the object and the other surrounding voxels are made up with a background 
material. The values in Table 1 are the attenuation coefficients at energy of 122keV to illustrate an object 
consisting of aluminum core and polyethylene background. 
 The materials used in the simulation are common materials with density in the range of common 
luggage from 0.94g/cm3 of polyethylene up to 8.5g/cm3 of brass. To examine the performance of the 
suggested algorithm for the ideal cases, well-collimated detectors and unique relationship between the 
incident and scattering energies are adopted and only single scattering gamma rays are assumed to 
record a count in detectors. The gamma source used in this simulation is Co-59 isotope source and, for 
simplification, the gamma beam is assumed to be a parallel pencil beam. The detectors used in the 
simulation are point detectors with tally 5 options. 

2.3 Modified Reconstruction Algorithm  

 The reconstruction process combines two steps; (1) directly calculation of µt(E1) using linear matrix 
inversion and (2) the nonlinear iterative reconstruction for µt(E0) and µc(E0). Self attenuation corrections 
are involved in both steps. 
 
2.3.1 µt(E1) Calculation 

 Each scattering response corresponding to a particular voxel (i,j,k) contains the same pre-scattering 
attenuation, hence a ratio of any two scattering measurements is an equation of µt(E1) only. For example, 
for a voxel (i,j,k) on a plane containing four side detectors, the following equations can be written: 
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where, for simplification, let assume ∆xin = ∆xout =∆. 
 For the plane holding NY×NZ voxels, the number of equations is NY×NZ×3-4 which is larger then 
the number of unknowns NY×NZ. In a matrix notation, Eq.(3) can be written as follows for the slice of 
voxels on the plane. 
 tR = A.µ'                                       (4) 
 This over-determined system equations can be easily solved by using linear matrix inversion 
method. To obtain µt(E1) images of whole object the reconstruction process for µt(E1) is repeated for all 
slices. 
  
2.3.2 µt(E0) and µc(E0) Calculation 

 With known µt(E1), Eq.(1) becomes a nonlinear equation with two unknowns µt(E0) and µc(E0). In 
order to solve this equation more one needs some more information on the two variables. An iteration 
process with a correction factor calculated from transmission measurements can be used in finding the 
reliable value of µt(E0) and µc(E0) by assuming µt(E0) ≈ µc(E0) 3,4). This reconstruction process works 
well in the gamma energy range from a few hundreds keV to ~1MeV where Compton scattering 
dominates the photoelectric absorption. From Fig.(2) of the attenuation coefficients at 662keV-energy, 
the assumption is probable for most elements with atomic number Z less than 70. However, the 
assumption is not suitable in lower gamma energy range or for a medium which has high atomic number 
Z. In these cases the photoelectric absorption portion in the total attenuation coefficient is considerably 
large so that the assumption causes high errors in the inversion reconstruction problem. 
 To avoid the assumption, a method for estimating µt(E0) that can be applied for iteration 
reconstruction processes with any incident gamma energy is introduced. A semi-empirical formula for 
total attenuation coefficient at the incident energy is built. In the geometry of 90˚ Compton scattering of 
gamma rays, the total attenuation coefficient can be expressed in the following formula 

 ( ) A
t pe C pe C

NZ
A

µ µ µ σ σ ρ= + = +                  (5) 

where µpe is the photoelectron absorption of the gamma ray in a medium with the atomic number Z and 
mass number A. Eq.(8) is rearranged as follows   
  t Ca bµ µ= +  (6) 
where a and b are coefficients considered as constant with an incident energy of gamma rays. The post-
scattering energy E1 is uniquely related to the incident energy E0 by the well-known equation  
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Therefore the relation between µt(E0) and µt(E1), µc(E0) can be suggested in a semi-empirical linear 
function as follows  
 ( ) ( ) ( )0 1 0* *t t CE d E e Eµ µ µ= +                    (8) 
where d and e are constant coefficients which are dependent on the gamma energy only. With the semi-
empirical equation and known µt(E1), Eq.(1) can be solved to provide the reconstructed images of the 
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object for µt(E0) and µc(E0).  
 
2.3.3 Self Attenuation Correction 

 In order to have the reconstructed images closer to the true images, the self attenuation effects 
should be considered. In the previous governing equations for 90˚ Compton scattering effects, the 
scattering is assumed happening at the center of the voxel. The assumption may cause the big relative 
errors of the inverse problem because actually the scattering can occur anywhere in the voxel volume 
and depart to a scattering detector, hence a correction factor is introduced to evaluate this effect. The 
correction factor for the self attenuation is defined as 

 
' '

in out
in out

in out

P P
P P

α α α= =                              (9) 

where Pin and Pout are the attenuation factors of in-coming and out-going gamma rays for the voxel, 
respectively. Pin and Pout are calculated by assuming that all gamma rays scatter at the center of the voxel, 
and the primed ones are calculated by the following algebra equations assuming the scattering occurs in 
the whole voxel. With the assumption that the scattering occurs in the center of the voxel, the 
attenuations for pre- and post-scattering in the voxel are given by 

 exp( )       exp( ' )
2 2in ijk out ijkP Pµ µ∆ ∆

= − = −          (10) 

Considering the fact that scattering occurs in the whole voxel volume, the attenuations can be obtained 
as 
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 A reconstruction algorithm for getting the images for µt(E0), µt(E1) and µc(E0) is suggested as shown 
in Fig.3. In the iteration process of the flowchart the correction factors in Eq.(9) are used for re-
evaluating the detector responses. The semi-empirical function Eq.(8) is used for solving the nonlinear 
equation in the iteration calculation. 

3. Results 
 In Fig. 4 are shown the total attenuation coefficients from XCOM version 3.1 data for gamma 
energies at 662keV and 122keV and the semi-empirical approximations for them. The fitted curves have 
good agreements with the XCOM photon data. The relative errors in comparison between the true value 
and the approximation are less than 5% in the case of 662keV. With E0 = 122keV the errors are less than 
6% for all elements except for the elements with the atomic numbers from Z=87 to Z=94. This results 
show that the approximation for µt(E0) by using the semi-empirical function Eq.(8) fits well to the true 
value of µt(E0) and looks reasonably goof for reconstruction iteration processes. 
 Table 2 shows some results of the old reconstruction algorithm using the detector responses from 
the MCNP simulations with the assumption of µt(E0) ≈ µc(E0) and without correction factors for self 
attenuation effects. The errors of µt(E1) reconstruction (Table 2.c) are low for most elements that have 
not only low atomic number but also high atomic number. For example they are less than 1% with 
polyethylene that has Zeff = 5.28 and about 3.3% for steel (Zeff = 25.61). The reconstruction problem for 
µt(E1) is a direct inversion of a linear algebraic system shown in Eq.(4). The errors of µt(E0) and µc(E0) 
(Table 2.a for µt(E0), Table 2.b and 2.d for µc(E0)) are much higher then those of µt(E1). They are about 
2% for low atomic number as polyethylene, from 10% to 20% for aluminium and are very high with 
high atomic number materials like steel. Therefore a modification for the reconstruction algorithm is 
needed for getting better images.  
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 Modifications suggested in the work are the use of the semi-empirical function for the evaluation of 
µt(E0) in the iteration process and the correction factors for the self attenuation effects. The results of the 
new reconstruction algorithm are in better agreements with theoretical values as shown in Table 3. For 
µt(E1) (Table 3.c and 3.e) the improvements in errors are not big, though the new results are much closer 
to the true values because µt(E1) is now evaluated directly from detector responses with a linear equation 
system. The µt(E1) errors are 0.8% for polyethylene, 2.9% for aluminium and 3.3% for steel and theses 
are quite good results for luggage inspection purposes. The invert results for µt(E0) and µc(E0) obtained 
by using the suggested new reconstruction algorithm are in good agreements with the theoretical values. 
From Table 3.a and 3.d, the µt(E0) errors are 0.8%, 1.0% and 10.2% for polyethylene, aluminium and 
steel, respectively, in comparison with 0.9% (PE) and 18.6% (aluminium) from Table 2.a. The 
improvements in errors are larger in the reconstructed values of µc(E0), from 1.8%, 7.2% and 1630% 
(Table 2.b and 2.d) to 1.6%, 1.9% and 20.3% (Table 3.c and 3.f) for polyethylene, aluminium and steel, 
respectively. Since the results from the newly suggested reconstruction algorithm show good accuracy, it 
can be concluded that the iteration method with the semi-empirical function and the correction factors 
for the self attenuation effects performs well and is able to reconstruct images in the 90° Compton 
scattering inspection system. 

4. Conclusions and Discussions 

 The modified new reconstruction algorithm showed better agreements with true values than the 
original algorithm. The main reason for the better agreements is that the semi-empirical formula is more 
accurate than rough approximation µt(E0) = µc(E0) in the energy range of this paper. Also improvements 
come from that the modified algorithm takes full use of all system equations in the µt(E1) calculation and 
that the correction factors better than the original simple approximation of half-thickness attenuation are 
introduced to model the effects of self attenuation in the cell of interest. 
 By using complete full matrix form of system equation in the calculations of µt(E1) and µt(E0) µc(E0) 
the algorithm became simpler, cleaner and mathematically more clearly refined than before. The concern 
that comes from the program modification is for cases with many cells, which will inevitably increase 
the matrix size and burden the least-squares routines for over-determined systems. But the burden is not 
much because µt(E1) and µt(E0) µc(E0) calculations are completely separated and µt(E1) calculation only 
deals with 2-dimensional NY×NZ unknowns, and µt(E0) µc(E0) calculation only deals with 1-
dimensional 2×NX unknowns.  
 With the newly modified reconstruction algorithm it has became possible to obtain three pieces of 
cell information, µt(E1) µt(E0) µc(E0), at the photon energy of 122keV or around it with reasonable errors. 
These three cross section data can be used in identifying the material of the voxel, at least in finding 
effective-Z and density. But there are some expected limits on material identification. The expected 
limits are that in the energy range of around 122keV, Compton scattering is still dominant over the other 
reactions and the most important information in identifying material, the photoelectric absorption cross 
section is small for most elements except some heavy elements and because of that it is hard to identify 
all the materials. But it is expected that effective-Z and density can be obtained from three pieces of 
reconstruction information of the voxel. 
 In the near future, the modified reconstruction calculations will be performed for measured detector 
responses. Experimental data adopting 122keV source and CsI scattering detectors and YAP 
transmission detectors will be available in a few months, while the case with 450KV X-ray tube source 
will require more time. After that material identification routines will be developed for real application 
of the inspection system. 
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Fig.1 Geometry of 90° Compton scattering system 
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Fig.2 Photon Cross Sections 
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Fig.3 The flowchart of the iteration process for inverse problem 
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 Fig. 4 Total cross section and the semi-empirical approximation as functions of atomic number Z 
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Table 1: 122keV attenuation coefficient map of the sample with aluminum core and polyethylene 
background (at i-j plane with k=2, bold typing indicates core material)  
 
a) Total attenuation coefficient (cm-1) 
 

 j=0 j=1 j=2 j=3 j=4 
i=0 0.152 0.152 0.152 0.152 0.152
i=1 0.152 0.152 0.421 0.152 0.152
i=2 0.152 0.152 0.421 0.152 0.152
i=3 0.152 0.152 0.421 0.152 0.152
i=4 0.152 0.152 0.152 0.152 0.152

b) Compton attenuation coefficient (cm-1) 

 j=0 j=1 j=2 j=3 j=4 
i=0 0.149 0.149 0.149 0.149 0.149
i=1 0.149 0.149 0.36 0.149 0.149
i=2 0.149 0.149 0.36 0.149 0.149
i=3 0.149 0.149 0.36 0.149 0.149
i=4 0.149 0.149 0.149 0.149 0.149
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Table 2: The related errors (%) of attenuation coefficients obtained from the imaging 
reconstruction algorithm using the assumption µt(E0) ≈ µc(E0) 

 

a) µt(E0) errors for the sample with aluminum core and polyethylene background 

 j=0 j=1 j=2 j=3 j=4 
i=0 -0.9 -0.9 -6.3 -0.9 -0.9 
i=1 -0.4 -0.4 -12.2 -0.4 -0.4 
i=2 -0.5 -0.5 -4.3 -0.5 -0.5 
i=3 0.5 0.5 1.6 0.5 0.5 
i=4 0.5 0.5 18.4 0.5 0.5 

b) µc(E0) errors for the sample with aluminum core and polyethylene background 

 j=0 j=1 j=2 j=3 j=4 
i=0 0.7 0.7 1.1 0.7 0.7 
i=1 1.0 1.0 4.5 1.0 1.0 
i=2 0.8 0.8 7.2 0.9 0.8 
i=3 1.8 1.8 6.6 1.7 1.8 
i=4 1.7 1.7 3.1 1.7 1.7 

c) µt(E1) errors for the sample with steel core and polyethylene background 

 j=0 j=1 j=2 j=3 j=4 
i=0 0.7 0.6 0.7 0.8 0.7 
i=1 0.7 0.9 -3.3 0.8 0.8 
i=2 0.8 0.7 -3.3 0.7 0.7 
i=3 0.8 0.8 -3.3 0.6 0.9 
i=4 0.7 0.8 0.7 0.8 0.8 

d) µc(E0) errors for the sample with steel core and polyethylene background 

 j=0 j=1 j=2 j=3 j=4 
i=0 0.7 0.7 8.2 0.7 0.7 
i=1 1.0 1.1 269.7 1.0 1.0 
i=2 0.8 0.8 1630.1 0.8 0.8 
i=3 1.8 1.8 888.3 1.7 1.8 
i=4 1.7 1.7 61.3 1.7 1.7 
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Table 3: The related error (%) of attenuation coefficients obtained from the imaging 
reconstruction using the semi-empirical approximation and the self-attenuation correction factors 

 

a) µt(E0) errors for the sample with aluminum core and polyethylene background 

 j=0 j=1 j=2 j=3 j=4 
I=0 0.7 0.7 0.7 0.8 0.7 
I=1 0.7 0.8 -1.0 0.7 0.7 
I=2 0.8 0.7 -1.0 0.8 0.7 
I=3 0.7 0.8 -1.0 0.7 0.8 
I=4 0.7 0.8 0.7 0.8 0.7 

b) µt(E1) errors for the sample with aluminum core and polyethylene background 

 j=0 j=1 j=2 j=3 j=4 
i=0 0.1 0.1 0.3 0.1 0.1 
i=1 0.1 0.1 -2.9 0.1 0.1 
i=2 0.1 0.1 -2.9 0.1 0.1 
i=3 0.3 0.3 -2.9 0.3 0.3 
i=4 0.3 0.3 0.2 0.3 0.3 

c) µc(E0) errors for the sample with aluminum core and polyethylene background 

 j=0 j=1 j=2 j=3 j=4 
i=0 0.7 0.8 1.6 0.8 0.8 
i=1 1.0 1.0 1.7 1.0 1.0 
i=2 0.7 0.7 1.9 0.7 0.7 
i=3 1.5 1.5 1.9 1.5 1.6 
i=4 1.5 1.5 1.4 1.5 1.5 

d) µt(E0) errors for the sample with steel core and polyethylene background 

 j=0 j=1 j=2 j=3 j=4 
i=0 0.1 -0.1 6.4 0.1 0.1 
i=1 0.1 0.1 -6.4 0.1 0.1 
i=2 0.1 -0.1 -8.9 -0.1 0.1 
i=3 0.3 0.3 -10.2 0.2 0.3 
i=4 0.3 0.3 -2.5 0.3 0.3 
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e) µt(E1) errors for the sample with steel core and polyethylene background 

 j=0 j=1 j=2 j=3 j=4 
i=0 0.7 0.7 0.7 0.8 0.7 
i=1 0.7 0.7 -3.3 0.8 0.8 
i=2 0.7 0.7 -3.3 0.7 0.7 
i=3 0.8 0.7 -3.3 0.8 0.8 
i=4 0.7 0.8 0.7 0.8 0.7 

f) µc(E0) errors for the sample with steel core and polyethylene background 

 j=0 j=1 j=2 j=3 j=4 
i=0 0.8 0.7 8.7 0.7 0.8 
i=1 1.0 0.9 20.3 0.9 1.0 
i=2 0.7 0.7 5.6 0.7 0.7 
i=3 1.5 1.5 -1.9 1.5 1.6 
i=4 1.5 1.5 -0.8 1.5 1.5 
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