가

Application of Probabilistic Fracture Mechanics for Reactor Pressure Vessel under Pressurized Thermal Shock

Abstract

In order to predict a remaining life of a plant, it is necessary to select the components that are critical to the plant life. The remaining life of those components shall be evaluated by considering the aging effect of materials used as well as numerous factors. However, when evaluating reliability of nuclear structural components, some problems are quite formidable because of lack of information such as operating history, material property change and uncertainty in damage models. Accordingly, if structural integrity and safety are evaluated by the deterministic fracture mechanics approach, it is expected that the results obtained are too

conservative to perform a rational evaluation of plant life. The probabilistic fracture mechanics approaches are regarded as appropriate methods to rationally evaluate the plant life since they can consider various uncertainties such as sizes and shapes of cracks and degradation of material strength due to the aging effects. The objective of this study is to evaluate the structural integrity for a reactor pressure vessel under the small break loss of coolant accident or the pressurized thermal shock by applying the deterministic and probabilistic fracture mechanics. The deterministic fracture mechanics analysis was performed using the three dimensional finite element model. The probabilistic integrity analysis was based on the Monte Carlo simulation. The selected random variables are the neutron fluence on the vessel inside surface, the content of copper, nickel, and phosphorus in the reactor pressure vessel material, and initial RT_{NDT} .

. 10 CFR 50.61[4] 가 (Pressurized Thermal Shock) 가 . [5~8] , 가 가 . . 가 가 가 . (Small Break Loss of Coolant Accident, SBLOCA) 가 가 가 가 [9]. (RT_{NDT}) (Cu), (Ni), (P) , Monte Carlo . , 2. 2.1 (nil - ductility reference temperature : RT_{NDT}) 7 K_{IC} [10]. $\left(MPa\sqrt{m}\right)$ $K_{IC} = 36.5 + 3.1 \exp[0.036(T - RT_{NDT} + 55.5)]$ (1) K_I K_{I} K_{IC} RT_{NDT} K_{I} K_{IC} *RT_{NDT}* 가 K_{IC} 2.2 가 가 가 가 가 [10], 1 • 2.3 Monte Carlo Simulation 가 Monte Carlo P_{f} М Ν . .

$$P_f = \frac{M}{N} \tag{2}$$

,

5 가

	Temperature [°C]	Base metal and Weld metal	Cladding	
Modulus of elasticity	20	204.0	197.0	
[<i>GPa</i>]	300	185.0	176.5	
Deissen's ratio	20	0.3	0.3	
POISSONSTATIO	300	0.3	0.3	
Thermal conductivity	20	54.6	14.7	
$[W/m^{o}C]$	300	45.8	18.6	
Thermal diffusivity	20	1.47	0.41	
$(X10^{-5}) [m^2/s]$	300	1.06	0.43	
Thermal expansion	20	10.9	16.4	
coeff.($X10^{-6}$) [$1/{}^{o}C$]	300	12.9	17.7	

	Initial RT _{NDT}	1 SD	% Coppor (Cu)	2 SD		
		uncertainties	% Copper (Cu)	uncertainties		
Base metal	- 20	9	0.086	0.02		
Welds	- 30	16	16 0.120			
	% Phosphorus	2 SD	% Niekol (Nii)	2 SD		
	(P)	uncertainties	% NICKEI (INI)	uncertainties		
Base metal	0.0137	0.002	0.72	0.1		
Welds	0.0180	0.002	0.17	0.1		

Base	Mean	$\Delta RT_{NDT} = [17.3 + 1537^{*}(P - 0.008) + 238^{*}(Cu - 0.08) + 191^{*}Ni^{2}Cu]^{*}\phi^{0.35}$		
metal	1SD	10°C		
Wold	Mean	$\Delta RT_{NDT} = [18+823^{*}(P-0.008)+148^{*}(Cu-0.08)+157^{*}Ni^{2}Cu]^{*}\phi^{0.45}$		
	1SD	6°C		
ΔRT_{NDT} normal distribution truncated between +3SD and -3SD				

 ΔRT_{NDT} normal distribution truncated between +3SD and -3SD φ : fluence in n/m² divided by 10²³; P, Cu, Ni % of phosphorus, copper and nickel

가

ABAQUS [11] . 3 K . · 가 6 K_I K_{IC} K_I 가 1500 가 가 가 K_{IC} . , RT_{NDT} 200 7 . 가 K_I . 가 K_{IC} 8 9 가 가 7600 가 K_I . 가 가 가 가 가 가 K_{IC} 가 가 RT_{NDT} 4 . RT_{NDT} shift RT_{NDT} 5 4 , 가 RT_{NDT} 10 가 가 60 , 가 가 가 가 가 10 Monte Carlo • 4 , . *K*₁ 3600 K_{IC} 가 . 가 11 . 가 가 , . 가

12 13 . , 7ŀ

7500

4.

(Weld metal)

8 가

(Base metal)

(Weld metal)

	Base	metal	Welds		
Fluence in 10 ²³ n/m ²	Mean RT _{NDT}	1 SD value	Mean RT _{NDT}	1 SD value	
3	33.0876	13.2870	23.7021	17.0939	
5	43.4683	13.2870	37.5854	17.0939	
7.5	53.1362	13.2870	51.1173	17.0939	
10	60.8771	13.2870	62.3309	17.0939	

5 가

 $\mathsf{RT}_{\mathsf{NDT}}$

 $\mathsf{RT}_{\mathsf{NDT}}$

		Base metal		Welds	
RPV age in year	Mean fluence value	Mean RT _{NDT}	1 SD value	Mean RT _{NDT}	1 SD value
10	3	33.0591	13.4369	23.5668	16.9523
20	5	43.4765	13.4369	37.5013	16.9523
40	7.5	53.0986	13.4369	50.9751	16.9523
60	10	60.8024	13.4369	62.1657	16.9523

(Weld metal)

(Base metal)

- 4. "Fracture toughness requirements for protection against pressurized thermal shock events," 1997, Code of Federal Regulation 10 CFR 50.61, USNRC
- Yinbiao, HE and Toshikuni ISOZAKI, 2000, "Fracture mechanics analysis and evaluation for the RPV of the Chinese Qinshan 300MW NPP under PTS," JAERI -Research 2000 - 12, JAERI
- N. K. Mukhopadhyay, B. K. Dutta, H. S. Kushwaha, S. C. Mahajan and A. Kakodkar, 1996, "Numerical Characterization of a Cylinder with Circumferential Cracks under Pressurized Thermal Shock," Int. J. Pres. Ves. & Piping 69, pp.97~104
- 7. W. E. Pennell, 1993, "Heavy Section Steel Technology Program Overview," Nuclear Engineering and Design 142, pp.117~135
- K. E. Stahlkopf, 1984, "Pressure Vessel integrity under Pressurized Thermal Shock Conditions," Nuclear Engineering and Design 80, pp.171~180
- OECD/NEA PWG3-IAGE Metal Group, 2004, "Probabilistic Structural Integrity of a PWR Reactor Pressure Vessel"
- 10. ASME Boiler and Pressure Vessel Code Section XI, 1998, Rules for Inservice

Inspection of Nuclear Power Plant Components, Appendix A, The American Society of Mechanical Engineers

11. ABAQUS/Standard User's Manual, Ver.6.3, 2002