

2004

Assessment of Multi-Dimensional Analysis Capacity of the MARS using the OECD-SETH PANDA Tests

, , 150

Abstract

The objectives of OECD/NEA-PANDA Tests are to validate and assess computer codes that analyze the non-condensible gas concentrations and mixing phenomena in a reactor containment building. Especially, the main issue is multi-dimensional analysis capability which is involed in the mixing of non-condensible gases, i.e. hydrogen. The

main tests consist of a superheated steam flow injection into a large vessel initially filled with air or air/helium mixtures. Then the temperature and concentration of non-condensible gases are measured. A pre-calculation has been performed with the MARS about PANDA Tests even though MARS is not a containment analysis code. Three cases among 25 PANDA Tests are selected and are modeled to simulate the jet plumes and air mixing in a large vessel. The dimensions of large vessel are 4 m diameter and 8 m height. For the conclusion of calculation, the cylindrical vessel which dimensions are 4 m diameter and 8 m height was simplified as rectangular geometry. It is revealed that the MARS code has the capability to distinguish the multi-dimensional distribution of the velocity and the temperature fields.

가

1.

1 가 가 OECD/NEA-SETH가 가 OECD/NEA PANDA Tests Program , [1]. OECD/NEA-PANDA Tests Program 5 2003 6 25 [2,3]. Program 가 1 4 1 PANDA Tests Facility 1 2 120 m³ 90m³ 가 DW1, DW2 OECD/NEA-PANDA Tests가 RPV DW2 1.5 MW .), Near-Wall Plume Test(9 Jet Impinging Test(8), Free Plume Test(7) Near-Wall Plume Test

1 Near-Wall Plume Test

.

1. OECD-PANDA TEST FACILITY 3

Test	Injection	Injection	Air	Vent location	Notes
No.	Elevatio	Velocity	concentratio		
	n (m)	(m/s)	n (%)		
9	1.8	1	100	DW1 top	Reference
10	1.8	1	100	DW2 bottom	Effect of vent location
11	1.8	1	50	DW1 top	Effect of composition
12	4.0	1	100	DW2 top	Effect of elevation
13	4.0	1	100	DW2 bottom	Effect of vent location
14	6.0	1	100	DW1 top	Steam concentration
15	6.0	1	100	DW1 bottom	Effect of vent location
16	1.8	3	100	DW2 top	Seek transition of plume
17	1.8	5	100	DW2 top	Seek transition of plume

1. Near-Wall Plume Test

OECD/NEA	Near-Wall Plum		Test	(Scoping Calculation)			
CFX-4	FLUENT	,				·	
GOTHIC			, CFX-4	Near-Wa	II Plume 1	Fest 9,	
16, 17	DW1						
KAERI				MARS[4]			
		3		,			
" multid" componen	t 가	[5].		3			
	가				Prandtl'	s Mixing	
Legth Model	[6].	가					
, OECD/NEA가	PANDA T	ests	Be	enchmarking	MARS	. ,	

2. Modeling of Three PANDA Tests

	9, 16,	17	DW2	380	К	
1.8 m		0.16 m		411 K		
DW1				. 가	·	
가						
				PIV(Particle	Image Velocir	netry)
. DW2	DW1	0.8	3 m		3.3	315 m
		DW1			,	
	DW1				Near-Wal	I Plume
Tests					3	
DW1	가	•				
						MARS
" multid" compo	nent		DW2			
가 .				4 m, 8 i	m	
					x, y, z	9, 11,
23 2277	noo	de	•		у-	
					3	
MARS				2		

가 0.16

0.08

 (V_x)

6.10

0.3 m

. 1 m/s

9 가 . 가 가

7.5 m/s

8.3 m/s

9.1 m/s

4.

MARS	OECD/SETH PANDA Test	S
가 .	OECD/SETH PANDA Tests	
가	Test No. 9, 16,	17

,

 OECD, Nuclear Safety Research in OECD Countries, Summary Reports of the Facilities and Programes at Risk (SESAR/FAP), OECD Nuclear Energy Agency, Paris (2001).

- [2] G. Yadigaroglu and J. Dreier, OECD SETH Project, The PANDA Tests, First meeting of the Program review Group, Erlangen (2001).
- [3] M. Andreani, OECD SETH Projects PANDA Tests, Analytical Activities, 5th Meeting of the Programme Review and 4th Meeting of the Management Board, Erlangen (2003).
- [4] , " 가 / ", KAERI/RR-2235/2001, (2002). [5] , , , " MARS , MULTID ", (2003).
- [6] Sung Won Bae, Jae-Jun Jeong, Bub Dong Chung, "MARS 1D Multid Component 가", (2003).