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Abstract

The threshold stress intensity factor, K,y of the CANDU Zr-2.5Nb tubes were investigated in
their radial and axial directions as a function of the hydrogen concentration at temperatures
ranging from 160 to 280 °C. Compact tension and cantilever beam specimens that were
electrolytically charged to 60 to 100 ppm hydrogen were used to determine the axial and radial
Kin, respectively.  The Ky were determined using a load-decreasing method where the applied
stress intensity factor decreased from 20 MPavm step-wisely by 0.5 MPaym until no crack



growth was detected by an acoustic emission sensor or the direct current potential drop method.
The K, of CANDU Zr-2.5Nb tubes in the radial direction was 8.4 MPavm which is higher than
that in the axial direction or 5.8 MPavm at the supersaturated hydrogen concentration in excess
of around 30 ppm H. However, when the supersaturated hydrogen concentration was less than

30 ppm H, the K,y exponentially increased with the decreasing supersaturation of hydrogen

concentration. The K,y dependence on the orientation and the hydrogen concentration was
discussed from viewpoints of the angle between the hydride habit plane and the cracking plane
and a hydride fracture stress dependence on the hydride size.
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Fig. 1. Distribution of hydrides precipitated in the specimens after charging of 60, 80 and 100

ppm H.
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Fig. 2. Schematic diagram of athermal cycle and loading schedule applied during DHC tests.
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Fig. 3. Axial and radial threshold stress intensity factors, K,y at 280 °C of the Zr-2.5Nb
tube with the total charged hydrogen concentration.
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Fig. 4. Threshold stress intensity factors, K,y at 280 °C of the Zr-2.5Nb tube with the
supersaturated hydrogen concentration or AC over the terminal solid solubility for dissolution of
hydrogen at 280 °C.
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Fig. 5. Kiy of the CANDU Zr-2.5Nb tube as a function of the supersaturated hydrogen
concentration, AC over the terminal

solid solubility for dissolution at various
temperatures.
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Fig. 6. DHC fracture pattern of the CANDU Zr-2.5Nb tube with the orientation: Flat fracture
surface was observed on the CT specimens where the DHC crack grew in the axial direction

while the rugged fracture surface appeared on the cantilever beam specimen where the DHC
crack grew in theradial direction.
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