2004

Ti

Hydrogen-Induced Cracking of Ti alloy

, , , , 150

	Ti-6	Al-4V				(hy	drogen	-indu	ced cr	acking)
						(delayed	l hydri	de c	racking)
									1000p	pm
가	Ti-6Al-4V	1	0, 25, 40	0, 70,	100,	140, 200				
						•			Ti	
가		가	가	Zr				가		
가	가				(7.53	2×10^{-7} 1	m/s, 25)		Zr
(1.936 x	10 ⁻⁷ m/s, 300)								Striati	on line
	Zr		striation	n line	;					
			•			Ti	Zr			
								Zr		Ti
		DHC								

Abstract

The objective of this study is an understanding of hydrogen-induced cracking of Ti-6Al-4V alloys which is widely used in various field, especially as a structural materials, by comparing the features of delayed hydride cracking of zirconium alloys. For this purpose, Ti-6Al-4V alloy was subjected to a constant load test at various temperature (10, 25, 40, 70,k 100, 140 and 200 °C) to measure crack velocity and observe the fractured surface. From the results, Ti alloy showed the tendency that decreasing test temperature represents increasing crack velocity, and

faster crack velocity, compared to that of Zr alloys. It would be the reason that Ti alloy has a higher yield stress than Zr alloys. And it is difficult to find striation line at fractured surface of Ti alloys. To this end, we reviewed a similarity of the features between the DHC of zirconium alloys and the hydrogen-induced cracking of Ti alloys and discussed the cracking phenomenon in Ti alloys with our DHC model.

1.

Ti-6Al-	-4V	Ti		가				
가					,			
				. Ti-	-6Al-4V	r		
								[1-6].
Moody								
					가	가	가	
		가	가				가	가
가								[3,4,7].
Ti-	6Al-4V		(2.2 x 10 ⁻	$^{-12}$ m ² /s, 20 °C	C)	((1.1×10^{-1})	16 m ² /s, 20
°C)				가				
	가			[8,9].				
	Ti-6Al-4	V						
						가		Ti-6Al-4V
				Zr	-		DI	HC
2.								
2.1								
		Ti-6Al-4V	Al Al	legheny Luc	dlum			
가	895 MPa	,	828 MPa					1
1		•	Ti-6Al-4V					
	260			1000	ppm		가	
			LEC	O RH 404				5
기	-		2 V	V 17 mm,	(a/	W) 0.4	СТ	

2.2 Constant Load DCPD Constant load . DHC CCT a₀/Wフト 0.5 1.7mm . Zr-2.5Nb wire spot welding out-put wire $0.5 \text{mm}\Phi$ potential drop . Constant load 270 2 1~2 /min undercooling 1 . 가 30 가 K1 15-80MPa m1/2 가 6 mA DCPD 가 1.5~2mm 가 DHC . Zr-2.6Nb DHC 6 DHC DHC DHC striation spacing image analyzer $K_{\rm I}$ DHC . K_{I} . DHCV . DHCV = DHC / (DHC - DHC) [m/sec] -----(1) 3. 3.1 3 1000 ppm 3 Ti-6Al-4V . 가 1000 ppm grain boundary . 3.2 4 Ti-6Al-4V 4 . 가 가 가 140 200 가 5 •

.

	Zr-	2.5Nb		300		가
						Meyn
	0	-77			가	
6			6		0	가
		가 기	가 가		가	가
	100				가	

가 Ti-6Al-4V

4.

						1000	ppm		가	Ti-
10, 25	5, 40, 7	0, 100,	140, 200							
						. Ti			가	
가	가	Zr			기	-			가	가
			(7.532 x	10 ⁻⁷ m/s	, 25)		Zr	(1.936 x	10 ⁻⁷
							Striati	ion lin	ie	
	stria	tion li	ne							
				Ti	Zr					
						Zr		Ti		
	10, 25 가	10, 25, 40, 7 フト フト stria	10, 25, 40, 70, 100, フト フト Zr striation li	10, 25, 40, 70, 100, 140, 200 フト フト Zr (7.532 x striation line	10, 25, 40, 70, 100, 140, 200 7 7 7 Zr (7.532 x 10 ⁻⁷ m/s striation line . Ti	10, 25, 40, 70, 100, 140, 200 7 7 7 Zr 7 $(7.532 \times 10^{-7} \text{ m/s}, 25)$	1000 10, 25, 40, 70, 100, 140, 200 . Ti 7 7 Zr 7 7 (7.532 x 10 ⁻⁷ m/s, 25) 	1000ppm 10, 25, 40, 70, 100, 140, 200 . Ti 7 7 Zr 7 7 (7.532 x 10 ⁻⁷ m/s, 25) . Striation line . Ti Zr Zr	1000ppm	1000ppm 7 10, 25, 40, 70, 100, 140, 200 アト フト Zr 7 フト フト Zr 10 ⁻⁷ m/s, 25) Zr (1.936 x (7.532 x 10 ⁻⁷ m/s, 25) Zr (1.936 x Striation line striation line . Ti Zr Ti

•

- 1. D.A. Meyn, Metall. Trans. A 3 (1972) 2302
- 2. R.R. Boyer, W.F. Spurr, Metall. Trans. A 9 (1978) 23
- 3. N.R. Moody, W.W.Gerberich, Metall. Trans. A 11 (1980) 973
- 4. N.R. Moody, W.W.Gerberich, Metall. Trans. A 13 (1982) 1055
- 5. D.N. Williams, Metall. Trans. A 5 (1974) 2351
- 6. S. M.L. Sastry, R.J. Lederich, B.B. Rath, Metall. Trans. A 12 (1981) 83
- 7. N.R. Moody, J. E. Costa, in: Y. W. Kim, R.R. Boyer
- 8. T. P. Papazoglou, N.E. Paton, Metall. Trans. AIME 242 (1968) 682.
- 9. H.G. Nelson, D.P. Williams, J.E. Stein, Metall. Trans. A3 (1972) 469

Tuble 1. Chemical compositions of 11 or a noy										
Element	С	Ti	Ν	Fe	0	Al	V	Y		
Content(at%)	0.03	Bal.	0.01	0.21	0.16	6.3	4.06	<0.001		

Table 1. Chemical compositions of Ti-6Al-6V alloy

Fig. 1. Microstructure of Ti-6Al-4V alloy.

Fig. 2. CT specimen for constant load test.

Fig. 3. Microstructure of Ti-6AI-4V after hydrogenation (1000 ppm).

Fig. 4. Crack velocity of Ti-6AI-4V at different testing temperature

Fig. 5. Crack growth velocity of the Zr-2.5Nb tube with an approach to the test temperature by either heating-up or cool-down. (ref. 10)

Fig. 6. Temperature dependency of crack velocity of Ti-6Al-4V

Fig. 7. Crack velocity of Ti-6Al-4V and Zr-2.5Nb alloys