2004

Electrochemical Analysis of CANDU Feeder Piping Characterized by High Temperature Rotating Cylinder Electrode

Abstract

High-temperature Rotating Cylinder Electrode (HTRCE) and water chemistry control system was developed for velocity-sensitive testing at high temperature – high pressure water condition. Potentiodynamic test was performed to Electrochemical analysis on FAC behavior of feeder pipe using the high temperature rotating cylinder electrode and surface analysis of oxide film and ex-situ impedance test was performed to evaluation of oxide property change by FAC phenomenon. ECP has changed with DO concentration, rotating velocity, and temperature and ECP curve with DO concentration shows the sigmoidal shape by variation of the diffusion limiting current for oxygen. Effect of rotating velocity on ECP is diminished over certain DO concentration. However the loss of oxide film is caused by increase of solubility of oxide. Thereby, the electrical resistance of oxide film is reduced by flow of fluid, which results in the reduction of protective role of the oxide film.

가	(Flow - Accelerated	Corrosion,	FAC)	1986	가	
Su	irry				1996	
Canada	Point Lepreau	(feeder)		가	FA	١C
		[1]. FAC				
	(mass transfer)			(stagnant	condition)	
	가 가					
				가		
			[2].			
					FAC	

2.

.

. Rulon

RCE 270

가

RCE , external pressure balanced Ag/AgCl autoclave . 316 stainless steel autoclave 기

, autoclave . (ECP) 7⁻0 , McDonald's data

[4].

.

. Si-C #1000 . FAC 270 autoclave 88 . 2 ,

0.01M Na₂SO₄ 가 AUTOLAB pgstat30 open circuit potential 1MHz 50µHz . SEM EDAX

2 . ア・ア・

, , , TOADKK , DO-32A

. 3 가

8ppm						13ppb ²	የት		4
			р	pb		600			
							12		
					가	500cc/mi	n		
	가		5cc/	min					4
					GE	E CRD			
	가	가				가			가
가		GE	CRD		13 ~	20 ppb			
100 liter								,	
3.									
1.									
5	6	150						가	
							2	,	
	가	가							
가		가							
	가	,	diffusi	on limit	ting cu	rrent			
가		activation	Та	afel line	Ð				[5].
								limiting cu	urrent
								,	
Tafel line		limiting	curren	t가					
						•			
					150)		magne	etite
					[6].		150	
				가				,	
magnetite		Ta	fel line		가				
							au	itoclave	

0	
2	

•

가	(FAC)			
				[2].
FAC				
				FAC
가, S	SEM, EDAX			가

13ppb		270	88	
	500rpr	n		
		0.	.015% 가	, 500rpm
	0.0	137%		
		,		가
9	10	SEM	EDAX	
	10			

, 500rpm

가 0.01M Na₂SO₄ . 0rpm 500rpm

.

,

.

Randles [7]. 1 . 가 . 4.

FAC

13ppb 350ppb , 가 가 가 가 가 • 가가 가 가 가 가 . 가 가 , 가 가 .

FAC

[1]. K. A. Burill, and E. L. Cheluget, *JAIF Int'l Conf. on Water Chemistry*, p. 699, 1998
[2]. P. Berge, and P. Saint Paul, *Water Chemistry of Nuclear Reactors System 2*, British Nuclear Energy Society, pp.19, 1981

[3]. D. R. Gabe, et. al, Journal of Applied Electrochemistry, vol. 28, pp. 759, 1998

[4]. D. D. Macdonald, A. C. Scott, and Paul Wentrcek, *Journal of the Electrochemical Society*, vol. 126, no. 6, pp. 908-911, 1979

[5]. A.Turnbull, M.Psaila-Dombrowski, "A Review of Electrochemistry of Relevance to Environment-Assisted Cracking in Light Water Reactors", *Corrosion Science*, Vol. 33, No. 12, 1992

[6]. R. J. Biernat and R. G. Robins, *Electrochimica Acta*, vol. 17, pp. 1261, 1972

[7]. R.Cottis, S.Turgoose, Electrochemical Impedance and Noise, *National Association of Corrosion Engineers*, 1999

"

FAC

,,

	r	
	270 , 13ppb, 0rpm	270 , 13ppb, 500rpm
max	0.0175	0.0027
R_p	4257.8	3375.04
С	0.013352	0.109333

4. 가

6.150

8.150

9.270 ,13ppb

SEM . (a) 0rpm, (b) 500rpm

10. FAC EDAX

(b)

11.

Nyquist plot