

2004

Abstract

Single phase pressure loss models for inlet (upstream of grid knower portion of rod bundle) and outlet (head pipe to exit flow hole) regions of 555dsr fuel assembly have been developed. First, component geometry has been simplified by considering flow path shape, flow area, hydraudi diameter, and inlet shape affeting flow characteristics. Secondly, information of pressure loss correlations obtained from the open literature have been applied to the simplified geometry. Finally, a total messure loss coefficient of the component has been acquired as an additive form. Pressulness models for the grid and the exit flow hole know been compared with the measureddata and an independently approached model, respectively. The effects of Rengilds number on the pressure loss coefficient have been discussed.

55

•

[1].

1 55 . 1 (a) Housing . 기

Head, Connector (Exit Flow Hole) Orifice .

가

 Orifice
 (1-(a) DP1),
 (1-(a)

 DP2 ~ DP4),
 (1-(a) DP5),
 (1-(a) DP6)

 Orifice (1-(b) DP7)
 .

, *P_i*, (1) Bernoulli

•

$$\Delta P_{i} = \Delta P_{i,s} + \frac{1}{2 \cdot \rho} \cdot \left[\left(\frac{M}{A_{1}} \right)^{2} - \left(\frac{M}{A_{2}} \right)^{2} \right]$$
(1)

$$K_{i} = \Delta P_{i} / (\frac{1}{2} \cdot \rho \cdot V_{bd}^{2})$$
⁽²⁾

•

Reynolds (3)

$$\operatorname{Re} = \frac{V_{bd} \cdot D_{h,bd}}{V}$$
(3)

,

.

•

.

, V_{bd}

18mm)

Head Pipe

가

(a) Full Bundle Test (b) Partial Orifice Test

Sim Tip Tip Flow Hole 가 . Grid 1 . Grid Flow Hole Grid Flow Hole 가 Housing Grid Flow Hole • Flow hole 가 가 가 . Cavity Cavity . 가 가 / , Cavity, Housing Thick Edge Orifice , Cavity . , _iK_{et}, (4) .

$$K_{inlet} = K_{or} + K_{cavity} + K_{bd} + K_{f}$$
(4)

or, cavity, bd f Orifice Cavity, , Housing

2-2.

Pipe Head Connector가 Connector (Exit Flow Hole)가 4 Connector Shielding Plug가 . Head Connector 가 Connector 90 . Head Connector Pipe Head Connector

Head Connector , Head Connector , K_{downstram}, (5) .

.

$$K_{downstram} = K_{efh} + K_{con} + K_{fhead} + K_{fconn}$$
(5)

,

efhr con, thead tconn , , Head , Connector . 1 . Grid

Grid Thick Edge Orifice Inlet Orifice Grid 가 가 Inlet Orifice Grid Thick Edge Orifice . . Ofifice (Chamfer) .

.

.

.

.

3-1. Inlet Orifice

.

Inlet Orifice 2 . 11mm Hole 6 가 . Inlet Orifice (Chamfer) . 3 3 90 . Thick Edge Orifice with Bevel Edge Chamfered Ofirice . 2 2 . Reynolds 가

3-2.

Disk Valve (2) Elbow with Recess (3) . 2 4 . Elbow with Recess 3 . Disk Valve Disk Disk가 , h, b_{th} Elbow with Recess Elbow , 3 3% . .

Disk Valve Elbow with Recess .

Portion	Shape	Model	Ref.
Bundle Inlet	Thick Edge Orifice,	$\begin{cases} 0.5 \cdot \left(1 - \frac{A_o}{A_1}\right) + \left(1 - \frac{A_o}{A_2}\right)^2 + \mathbf{t} \cdot \sqrt{1 - \frac{A_o}{A_1}} \cdot \left(1 - \frac{A_o}{A_2}\right) + \mathbf{I} \cdot \frac{L_o}{Dh_o} \end{cases} \cdot \left(\frac{A_r}{A_o}\right)^2 \\ \mathbf{t} = f(\frac{L}{D_b}) \end{cases}$	[3] Diag. 4-12
	Cavity (Treverse Gap)	Cd=0.014 at h/e>1	[4] Fig. 20
	Friction Pipe	$0.316 \cdot \operatorname{Re}_{o}^{-0.25} \left(\frac{L_{o}}{Dh_{o}} \right) \left(\frac{A_{r}}{A_{o}} \right)^{2}$	[3] Fig. 2-2
	Friction Bundle	$027.6 \cdot \operatorname{Re}_{o}^{-0.76} \left(\frac{L_{o}}{Dh_{o}} \right), 1,000 < \operatorname{Re} < 4,070$	[2]
	Friction Bundle	$0.49 \cdot \text{Re}_{o}^{-0.275} \left(\frac{L_{o}}{Dh_{o}} \right), 4,070 < \text{Re} < 40,000$	[2]
Bundle Outlet	Sudden Area Contraction	$0.5 \left(1 - \frac{A_o}{A_1}\right)^{3/4} \cdot \left(\frac{A_r}{A_o}\right)^2$	[3] Diag. 4-9
	Disk Valve Without Bottom Guides	$\boldsymbol{x} = (\boldsymbol{a}_{o} + \boldsymbol{b}_{o}) \cdot (\frac{A_{r}}{A_{o}})^{2}$ $\boldsymbol{a}_{o} = 0.55 + 4[(b_{r} / D_{o}) - 0.1]$	[3] Diag. 9-22
		$\boldsymbol{b}_{o} = 0.155 / (h / D_{o})^{2}$	
	Friction	$0.316 \cdot \operatorname{Re}_{o}^{-0.25} \left(\frac{L_{o}}{Dh_{o}} \right) \left(\frac{A_{r}}{A_{o}} \right)^{2}$	[3] Fig. 2-2
	(a) Bundle Inlet	y of Fuel Rod en Bottom Pin of Fuel Rod and Grid ction Wall Between Grid and Inlet Orifice (A) Head (b) Bundle Downstream	ng Plug Tube ole stor

Portion	Component	Flow	Wetted	Hydraulic	Friction	Dimension
		Area	Perimeter	Diameter	Length	Dia., No.
		(mm ²)	(mm)	(mm)	(mm)	(mm,)
Inlet	Housing	2734	185	59.00	223	59,1
Orifice	wall					
	Orifice	570	207	11	4	11,6
Exit	Connector	1257	126	40.00	91	40,1
Flow	Flow Hole	2807	468	24		15x50,4
Hole						

2. Inlet Orifice

Orifice

Portion	Shape	Model	Ref.
Inlet Orifice	Thick Edge Orifice with Beveled Edge	$\begin{cases} \mathbf{x} \cdot \left(1 - \frac{A_o}{A_1}\right) + \left(1 - \frac{A_o}{A_2}\right)^2 + \mathbf{t} \cdot \sqrt{\mathbf{x} \cdot (1 - \frac{A_o}{A_1})} \cdot \left(1 - \frac{A_o}{A_2}\right) + \mathbf{I} \cdot \frac{L_o}{Dh_o} \end{cases} \cdot \left(\frac{A_r}{A_o}\right)^2 \\ \mathbf{x} = f\left(\frac{L}{D_h}\right), \mathbf{x}' = f\left(\frac{L}{D_h}\right) \end{cases}$	[3] Diag. 4-13
	Friction	$0.316 \cdot \operatorname{Re}_{o}^{-0.25} \left(\frac{L_{o}}{Dh_{o}} \right) \left(\frac{A_{r}}{A_{o}} \right)^{2}$	[3] Fig. 2-2
Exit Flow Hole	Elbow with Recess	$\mathbf{x} = 1.2 \cdot C_1 \cdot A \cdot \mathbf{x}_{local}$ $C_1 = 1.0 for \ circular \ duct, \ A = f_1(\mathbf{d})$ $\mathbf{x}_{local} = 0.95 \cdot \sin^2(\frac{\mathbf{d}}{2}) + 2.05 \cdot \sin^4(\frac{\mathbf{d}}{2})$ Recess	[3] Diag. 6-5
	Friction	$0.316 \cdot \operatorname{Re}_{o}^{-0.25} \left(\frac{L_{o}}{Dh_{o}} \right) \left(\frac{A_{r}}{A_{o}} \right)^{2}$	[3] Fig. 2-2
A Test Section Wall			
(a)	Inlet Orifice	(b) Exit Flow Hole	

4. 가

4.

Position	Component	Flow	Wetted	Hydraulic	Friction	Dimension	
		Area	Perimet	Diameter	Length	Dia.,No.	
		(mm ²)	er(mm)	(mm)	(mm)	(mm,)	
Bundle	Housing wall	2734	185	59.00		59	
Inlet	Grid	961	1101	3.49	9	3.5,96	
						2.5,12	
	Gap	2205	820	10.76	6	3.4,55	
						2.0,6	
	Rod Bundle	1071	1373	3.12	18	55rods	
	(Reference)						
Bundle	Head	1452	135	43.00	64.2	43	
Outlet	Connector	1257	126	40.00	91	40	
	Flow Hole	2807	468	24		15x50,4	
					5	. 5	
Reynolds	(Re 5,000)			가		
Rey	ynolds (Re	10,000)				
					. Reynol	ds 33,000	
		0.99					
Header	Connector			6		6 Rey	nolds
가 가		가					Pipe
			가				

Reynolds 33,000 Head & Connector 0.08

	, 1.50 [1].			
5.				
55				
	가 .			
	Grid	((Exit Flow Hole)	
	Thick Edge	Orifice Di	sk Valve	
Reynolds	33,000 Grid		0.74	
	Orifice	, 0.57		
Reynolds	33,000		0.99 .	
Reynolds	33,000 H	lead & Connector		0.08
	, 1.50			

.

Nomenclature

Α	flow area	[m ²]		<u>Subscripts</u>
Cd	drag coefficient		bd	bundle
D_h	hydraulic diameter	[m]	cavity	cavity
h	height	[m]	con	connector
Κ	pressure loss coefficient		efh	exit flow hole
М	mass flow rate	[kg/s]	f	friction
Р	pressure	[bar]	fconn	wall friction in connector
Po	Reynolds number $(-\frac{VD_h}{D_h})$		fhead	wall friction in head
ĸ	V		i	arbitruay
V	local velocity	[m/s]	inlet	inlet
			or	orifice
	Greek Symbols		r	reference
	difference		1	inlet
ξ	pressure loss coefficient		2	outlet
ν	kinematic viscosity	[m ² /s]		
	density			

6. Head Connector

1. , " SSF " , 2003

- 2. , " ", KAERI/TR-992/98, (1998)
- 3. Idelckick, "Handbook of Hydraulic Resistance," 2 edition Publishced by Hemisphere Publishing Corporation, (1986)
- 4. Sighard F. Hoerner, "Fluid Dynamic Drag," Published by the Author (1965)

•