

Abstract

Lead-Bismuth Eutectic has been widely studied as core coolant and target material of ADS (accelerator driven transmutation system) in various countries. LBE corrosion has been considered as an important design factor to limit the temperature and velocity of ADS system. KAERI finished preliminary design of corrosion loop. Most components of loop were already manufactured to construct within 2004. The EM-pump was designed by an equivalent electric circuit method to move an LBE up to 2m/sec in the test-section of the corrosion loop(60lpm/4bar). We measured the pumping force with one-component dynamometer and also checked the temperature of the pump-coil and duct with current. From this test, we confirmed that the prototype EM-pump could operate around 500°C and pumped the LBE up to 2.5bar.

2004

. זי

(electromagnetic pump)

2. Fig.2 ,

Fig. 2. Three-dimensional schematics of Pb-Bi corrosion loop.

(sump tank)

 1m
 ,
 2
 7! (cover-gas)

 ,
 .
 .

 80liter
 ,
 .30liter

가

(calibration tank)

	(level-senso	or) (stop-watch)			·			
	. (test-section)			channel)	(sample)			
				,					
(glove	box)								
	(oxygen	concentration	n) Ar	cover	gas A	$Ar+H_2(5\%)$			
water(H ₂ O)	(bubbling)	(water va	apor)	()	H ₂ /H ₂ O ratio)			
				10 ⁻²⁰ ba	r				
가				$H_2 = H_2O$					
C_o	10^{-7} wt% ~10	0 ⁻⁵ wt%		(1)		P _{O2}		
(2)			Н	₂ H ₂ O					
$C_{o} = C_{o,S} \left(\frac{P_{O_{2}}}{P_{O_{2},S}}\right)^{2} [wt\%]$									(1)
			$P_{O_2} = (\frac{P_{H_2O}}{P_{H_2}})^2 \exp(-\frac{1}{2} \frac{1}{2} \frac{1}{2$	$\frac{2\Delta G_{\rm H_2O}^{\rm o}}{\rm RT})$	[atm,bar]	l			(2)
		S	T[K]			, R	,	G	
Gibbs			. Tabl	le 1					

bbs . Table 1

Table 1. Major specification of corrosion loop

Operation temperature	400°C ~ 550°C (max. 600°C)			
Liquid-metal volume	Pb44.5%-Bi55.5%, 0.08m ³			
Test-section	$3/4$ inch-Schedule 40, SUS 316 seamless pipe, V_{mean} =2m/s (at 45lpm)			
Sample specification	ø8mm-T2mm-H5mm			
Piping system	1.5inch-Schedule 40, SUS316 pipe			
Flow measurement	EM flow meters			
Liquid metal pumping	EM-pump (60lpm-4bar-40kVA)			
Oxygen control	H_2/H_2O partial pressure (10 ⁻⁵ wt% ~ 10 ⁻⁷ wt%)			
Purification	Magnetic filter, mechanical filter			

Fig. 3. Schematics of EM-Pump for Pb-Bi corrosion loop.

Fig. 4. Equivalent Circuit on One Phase of EM Pump Developed by Three-Phase Power.
(I: Input Current, V: Input Voltage, R₁: Primary Equivalent Resistance, X₁: Leakage Equivalent Reactance, X_m: Magnetizing Reactance, I': Induced Current inside Fluid, R₂: Equivalent Resistance of Fluid, s: slip)

Fig. 4			가		
(inner co	ore), (outer	core) (coil)	1	(primary part)	(duct

channel) 2 (secondary part) . 7

.

(developing power) ΔP

(flow rate) Q (3)

.

$$\Delta P = \frac{3I^2}{Q} \frac{R_2(1-s)}{s(R_2^2/X_m^2 s^2 + 1)}$$
(3)

,

$$\mathbf{R}_{1} = \frac{\pi \rho_{c} q \mathbf{k}_{p}^{2} \mathbf{m}^{2} \mathbf{D}_{0} \mathbf{N}^{2}}{\mathbf{k}_{f} \mathbf{k}_{d} \mathbf{p} \tau^{2}}$$
(4)

$$X_{1} \cong \frac{2\pi\mu_{0}\omega D_{0}\lambda_{c}N^{2}}{pq}$$
(5)

$$X_{\rm m} = \frac{6\mu_0 \omega \tau \pi D_0 (k_{\rm w} N)^2}{\pi^2 p g_{\rm e}}$$
(6)

$$R_{2} = \frac{6\pi D\rho_{r}'(k_{w}N)^{2}}{\tau p}$$
(7)

(3)-(7) (developing force)
$$\Delta P$$
 (efficiency) ϵ

$$\Delta P = \frac{36\sigma sf\tau^{2}(\mu_{0}k_{w}NI)^{2}}{pg_{e}^{2}\{\pi^{2} + (2\mu_{0}\sigma sf\tau^{2})^{2}\}}$$
(8)

$$\varepsilon = \frac{6k_{w}^{2}(1-s)}{\frac{\rho_{c}qk_{p}^{2}m^{2}\sigma g_{e}}{k_{f}k_{d}\tau}\{1 + (\frac{\pi}{2\mu_{0}fs\sigma\tau^{2}})^{2}\} + \frac{6k_{w}^{2}}{s}}$$
(9)

Fig. 5. Characteristics of Electromagnetic-Pump for Pb-Bi Corrosion Loop

(emergency switch)가

(a) EM-pump

(b) Power system

Fig. 6. Electromagnetic-pump system for Pb-Bi Corrosion Loop

4.

(prototype)

가

(Fig. 7(b)).

(a) Measurement of pumping force

(b) Measurement of magnetic field

Fig. 7. Measurement of EM-pump characteristics

Fig. 8. Calibration data of dynamometer

1/16" K-type sheath

, 6ch 1sec sampling .

NOMENCLATURE

- B Magnetic field
- *D* Mean diameter of the fluid in EM pump

- D_0 Diameter of inner core in EM pump
- g_e Effective inter-core gap
- *m* Number of phase of input power
- N Turns of coils
- *p* Number of pole pairs
- P Pressure
- q Number of slots / pole pairs / phase
- T Temperature (K)
- f Electrical conductivity of fluid
- w Electrical conductivity of tube wall
- $k_p = t_c / w$ (slot pitch / slot width)
- k_f Slot-filling factor
- k_d t/w (t: slot depth)
- k_w Winding factor
- au Pole pitch
- μ_0 Magnetic permeability
- ω Input angular frequency(2 *f*, *f*: input frequency)
- $\lambda_c = \frac{1}{12}k_a(1+3a)$ (a: chording factor)
- ρ_c Resistivity of coil conductor
- ρ_r ' Surface resistivity of the fluid
 - 1. W. S. Park et al., Development of Nuclear Transmutation Technology, KAERI/RR-1702/96, 1996
 - Y. I. Orlov et al., "The Problems of Technology of the Heavy Liquid Metal Coolants (Lead-Bismuth, Lead)", Proceedings of the Heavy Liquid Metal Coolants in Nuclear Technology, Obninsk, 1998
 - G. Mueller et al., "Investigation on Oxygen Controlled Liquid Lead Corrosion of Surface Treated Steels", J. of Nuclear Materials, 2000, 278, 85-95
 - 4. , , , "316LN Pb-Bi ", , 2002, 10 ,
 - 5. L. R. Blake, " Conduction and Induction Pumps for Liquid Metals", *British Nuclear Energy Conference*, Paper No. 2111 U, July, 1956.
 - 6. S. A. Nasar, Linear Motion Electric Machines, John Wiley & Sons, New York, 1976.