2004

Zircaloy-4

가 PCI

Effect of Final Heat Treatment on the PCI Characteristics of Zircaloy-4 Cladding

> , , , , 150

Zircaloy-4(Zry-4) PCI(Pellet Cladding Interaction) Zry-4 ISCC (iodine-induced stress corrosion cracking) Zry-4 lodine K_{ISCC} (threshold stress intensity factor) Kı K_{ISCC} 가 region II 1/10 K PCI 가 PWR 가 PCI

Abstract

ISCC (lodine-induced stress corrosion cracking) test was performed in finally heat-treated Zry-4 to investigate the effect of microstructure on PCI (Pellet cladding interaction) characteristics of Zry-4 cladding. Crack propagation rate and threshold stress intensity factor ($K_{\rm ISCC}$) of pre-cracked Zry-4 was measured after internal pressurization test in high temperature and high pressure iodine environment. Recrystallized specimen showed higher $K_{\rm ISCC}$ and lower crack propagation rate as 1/10 value than stress relieved specimen. The results showed that final heat treatment in higher temperature was recommended to enhance PCI resistance in developing PWR fuel cladding.

1.

/ (PCI :

1970 pellet cladding interaction)

SCC (SCC : stress corrosion cracking) 가 가 . , 가 가 [1-7]. 가 ISCC , PWR PCI 가 Zr I SCC (Stress Relieved, SR) Lemaignan[8], Schuster[9] Zry-4 ISCC KISCC , . , 가 • 가 ISCC 가 Zry-4 PCI (SR) (RX) I SCC , . iodine K₁ フト K_{ISCC} 가 region PCI П 1/10 . 2. 2.1 Zry-4 low tin Zry-4 Sn 1.3 wt% 3 (SR) 600°C (RX) 470°C 3 SR . Fig.1 RX . Lemaignan[10] . 가 Instron 8516 Zircaloy-4 , 13 cm 0.12 mm, 가 5Hz 5000 sine wave ~ 16000 . 가 ISCC .

2.2 ISCC

Fig.2	2	ISCC			1	,	P&I
-			90Mpa	600		4	
					/		
He 가 가	가				,	autoclave	Ar
		on-line	PC		,	. Fig	J.3
			,			UT 320	UM
330 9	,	RS485					
		RS-converter,				contro	ller,
				PCMCIA Mul	ti-port		

2.3

	8.36 mm,	0.57 mm	Zircaloy-4	13 cm	
			iodine	ISCC	
350	가		가		. Aldrich
99.99%	iodine		, 10 ⁻³ g/cm ²		
	. ISCC		•	가	
				가	. 100
				(SEM)	·
			ISCC		ISCC

.

3.

.

3.1 pre-crack

Fig.4				가		
가				가		
. Fig.5 2				가 16,000 cycle 가 가		350
			가		Fig 6	
, a/t	0.2	0.3		5,000 cycle	Tig.0	

3.2 Stress Intensity Factor

$$F = 1.12 + 0.053\xi + 0.0055\xi^{2} + \left(1 + 0.02\xi + 0.0191\xi^{2}\right) \frac{\left(20 - \frac{R}{t}\right)}{1400}$$
(3)

	$\xi = \frac{a}{t} \left(-\frac{1}{t} \right)^{-1} \left(-\frac{1}{t} $	$\left(\frac{a}{2 c}\right)$						
	17X17 PWR		Zry-4		R/t=7.37			
	(2)	(3)			. Fig.7	(3)		a/t
a/c	F				a/t 가	F	a/c	
				F	(2)			Kı

 $3.3\ K_{\text{ISCC}}$

Fig.8			, ISCC			
. Fi	g.9				SEM	•
		SR	RX		∠r	•
ISCC			가	, RX		
grain boundary	/ IS	CC				
Fig. 10			Kı			
		SR	Zircaloy-4		KISCC	3.3
MPa m ^{1/2}	RX	4.8 MPa m	^{1/2} , RX	ISCC		
			Kı	re	gion II	
RX SF	1/10				RX	
PWR	PCI		가		, 가	

4.

- M.F. Lyons, D.H. Coplin and G.G Jones, High performance UO₂ Fuel program, GEAP-3771-10,11,12 (1963/64)
- 2. H. S. Rosenbaurm, Electrochem. Tech, 4 (1966) 153
- 3. J. A. L. Robertson, in : proc. of Joint Topical Meeting on commercial Nuclear Fuel Technoloh tody, Toronto, Aprial 1975, CNS-ISSN-0068-8515

- 4. F. Garzarolli, R. von Jam and H. Stehel, Energy Rev. 17(1979) 31
- 5. J. C. Wood and J. R. Kelm, Res Mech, 8(1983)127
- 6. J. C. Wood, Nucl. Technol, 23(1974)63
- 7. B. Cox, J, Nucl, Mat. 172(1990)249
- 8. C. Lemaignan, Int. J. Pres. Ves. & Piping, 15 (1984) 241
- C. Lemaignan and I.schuster, Pro. Technical Committee Meeting on Properties of Materials for Water Reactor Elements and Methods of Measurement, Vienna, Austria, 13-16(1986)
- 10. I. Schuster, C.Lemaignan and J. Joseph, SMiRT-12C03/2(1993), 45
- 11. Yu, K, Bibilashvily, Yu. N. Dolgov, B. I. Nesterov, V. V. NoviRov, J. Nucl, Mater. 224(1995) 307
- 12. T.L. Anderson, "Fracture Mechanics-Fundamentals and Applications", CRC Press., 2nd Ed. (1995)636

Fig. 1 microstructure of Zircaloy-4 specimens heattreated at (a) 470°C and (b) 600°C for 3hr.

(a)

(b)

Fig. 2. Schematic drawing of the ISCC Testing Facility

1: Specimens, 2: Thermocouple, 3: SS Liner (100⁶ X 300^L),

4: High Pressure Gauges & Transducers, 5: High Pressure Regulators, 6: High Pressure Gauge, 7: High Pressure Valves, 8: Automatic Valves

Fig. 3. Control and indication system

Fig. 4. Surface crack in an internally pressurized cylinder

Fig. 5. Depth ratio of fatigue crack vs. fatigue cycle plots.

Fig. 6. Fractured surface showing the region of fatigue, ISCC and tensile rupture

Fig. 7. Boundary-correction factor for a surface crack in a pressurized tube (t/R=0.13)

Fig. 8. Fracture surface in the defect area of a specimen tested for; 1 - fatigue crack; 2 - ISCC; 3 - ductile overload

Fig. 9. Detailed fracture surface in the defect area of a specimen tested for (a) fatigue crack; (b) ISCC; (c) ductile overload

Fig. 10. Crack propagation rate versus stress intensity factor for Zircaloy-4 claddings