

Abstract

The nonlinear behavior of prestressed concrete reactor containment under severe pressure due to the loss of coolant accident is a major concern for structural safety in the design of nuclear power plant. For the evaluation of ultimate internal pressure capacity of containment structure, the nonlinear static analysis of large scale model was accomplished by using FEM. Especially because PWR-type containment has unbonded tendons, modified stress-strain relationship of an unbonded tendon was developed and applied. Also for CANDU-type containment, with bonded tendons, the nonlinear analysis was conducted. The analyzing technique in this paper can be effectively applied to evaluate ultimate pressure capacity of the real reactor containment structure.

(reactor containment structure) (LOCA: loss of coolant accident)

(reactor)가,가(PWR: pressurized water reactor)가(CANDU:Canada deuterium uranium or PHWR: pressurized heavy water reactor)

· DIANA 8.1 가 3

 (discrete model)
 .

 (distributed model)
 (layered element)

 (embedded model)

(unbondoed tendon)

.

.

.

,

.

(bonded tendon)

,

(sheath pipe)

,

. ,

,

.

가.

-

2.

(Ring Beam) 가

가 .

가

.

[[1]].

1

가	(PWR)	가	(CANDU)
	60psi		18psi
	3 3		

2.1 가 -

1

CANDURizkallaGentilly21/143m(wall)(dome),(base)[[2]].(hoop)(buttress)(meridional)

(ring beam)가 .

1 1/14 PCCM

22	가			11					
		62kN	,			(cem	ent gro	uting)	
1	1/14	PCCM	DIANA	8.1					
	Mindlin								
	1380	8			,		125	6	
		,				20			
2024									2

2 1/14 PCCM

Properties	Dome	Base				
Geometry	100mmShell127mmShell		Solid			
Geometry	$\rho_{s,in}=1.25\% \rho_{s,out}=1.25\%$					
Concrete	$f_c'=0$	$f_c = 55.2$ MPa				
Re-bar	$f_y=483$ MPa					
Tendon	One $\frac{1}{2}$ in. seven-wire strand $(A_p=98.7 \text{mm}^2)$ with $f_{pu}=1862 \text{MPa}$					

(dome-apex)

,

1.2

1/14 PCCM

90 90 Experiment
 Analysis Experiment
 Analysis Displacement [mm] Displacement [mm] 60 60 30 30 0 0 -30 0 -30 0 0.3 0.6 0.9 1.2 0.3 0.6 0.9 Pressure [MPa] Pressure [MPa] (a) radial at mid - height (b) vertical at dome - apex

2 1/14 PCCM

1.8m

가

(gauge 225)

demec strain gauge (test G)

3

(Permeability)

(a) (b) (c) (d)

4 1/4 PCCV

			45 °		90		가	
45	, 360 °				90	가		,
		45 °		2.5 °		18	가	

		444kN
494kN	(grease)	
4 1 1		

		[[4]].					
	4	DIANA 8.1				1144	8
		3	180	6			
	80	20				26	64
15		,	20		1584		

,

Properties	Dome	Wall	Base		
Geometry	325mm+1.6mm Shell $\rho_{s,in}$ =0.29% $\rho_{s,out}$ =0.28%	275mm+1.6mm Shell $\rho_{s,in}$ =0.80% $\rho_{s,out}$ =0.64%	Solid		
Concrete	$f_{c}^{'}=62.0$ MPa	$f_c = 62.0$ MPa $f_{cr} = 2.21$ MPa			
Re-bar	f_y =480MPa f_u =629MPa				
Liner	f_{ly1} =375MPa ε_{ly1} =0.18% f_{ly2} =447MPa ε_{ly2} =5.08% f_{lu} =488MPa ε_{lu} =33.2%				
Tendon	Three 13.7mm seven-wire strand(A_p =339mm ²) with f_{pu} =1886MPa ε_{pu} =3.37%				

(12) $- g_1 5(b)$ $p_i A_p p_e p_i A_p f_{pu}$

5

$$g_{1}^{-1}(\sigma_{1,\text{ave}}(p_{i})) = f^{-1}(\sigma_{1,\max}(p_{i})) = \varepsilon_{1,\max}(p_{i})$$
(12)

.

(f)

(*g*₁) 가

_

.

.

가 . - (g₂)

가

$$g_{2}^{-1}(\sigma_{2,\text{ave}}(p_{i})) = f^{-1}(\sigma_{2,\text{max}}(p_{i})) = \varepsilon_{2,\text{max}}(p_{i})$$

$$g_{3}^{-1}(\sigma_{3,\text{ave}}(p_{i})) = f^{-1}(\sigma_{3,\text{max}}(p_{i})) = \varepsilon_{3,\text{max}}(p_{i})$$

$$\vdots$$

$$g_{n}^{-1}(\sigma_{n,\text{ave}}(p_{i})) = f^{-1}(\sigma_{n,\text{max}}(p_{i})) = \varepsilon_{n,\text{max}}(p_{i})$$
(13)

(1 *j n*)

(*TOLER.*) 1%~5%

,

.

.

$$\frac{\sqrt{\sum_{i} \left(\sigma_{j,\max}\left(p_{i}\right) - \sigma_{j,\operatorname{ave}}\left(p_{i}\right)\right)^{2}}}{\sqrt{\sum_{i} \left(\sigma_{j,\operatorname{ave}}\left(p_{i}\right)\right)^{2}}} \leq TOLER.$$
(14)

(14)

6

가

,

8 1/4 PCCV

,

7

6.2m

8

.

가 ✓ , CANDU 3 PWR

가 .

- *fib* Task Group on Containment Structures, *Nuclear Containments*, International Federation for Structural Concrete (*fib*), 2001.
- [2] Rizkalla, S. H., Simmonds, S. H., and MacGregor, J. G., "Prestressed Concrete Containment Model", *Journal of Structural Engineering*, ASCE, Vol. 110, No. 4, 1984, pp. 730-743.
- [3] Hessheimer, M. F., Pace, D. W., Klamerus, E. W., Matsumoto, T., and Costello, J. F., "Instrumentation and Testing of a Prestressed Concrete Containment Vessel Model", *Transactions* of the 14th International Conference on Structural Mechanics in Reactor Technology (SMiRT 14), Lyon, France, 1997, H03-4, pp. 97-103.
- [4] Sandia National Laboratories, Pretest Round Robin Analysis of a Prestressed Concrete Containment Vessel Model, U. S. Nuclear Regulatory Commission (NRC) and Nuclear Power Engineering Corporation (NUPEC), NUREG/CR-6678, 2000.
- [5] Naaman, A. E., and Alkhairi, F. M., "Stress at Ultimate in Unbonded Post-Tensioning Tendons: Part 2 – Proposed Methodology", *ACI Structural Journal*, Vol. 88, No. 6, 1991, pp. 683-692.