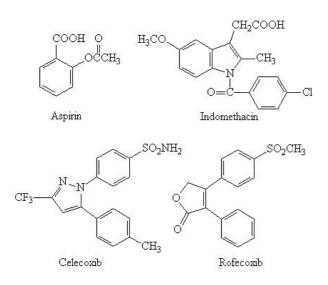
The synthesis of isotopic fluorine and iodine–labeled COX-II inhibitor and *in vitro* validation

^a Gwangil An, ^b Taesub Lee, a Kyochul Lee, a Byung seok Moon, ^b Chang Woon Choi, a Kwon Soo Chun. *a* Radiopharmaceuticals *Laboratory, Korea Institute of Radiological and Medical Sciences (KIRAMS),*

Gongleung-Dong 215-4, Nowon-Gu, Seoul, 139-706, gwangil@kcch.re.kr


b Lab. Of Nuclear Medicines, , Korea Institute of Radiological and Medical Sciences (KIRAMS), Gongleung-Dong 215-4, Nowon-Gu, Seoul, 139-706

1. Introduction

In these day, NASIDs (non-steroidal antiinflammatory drugs) such as aspirin, diclofenac and ibuprofen are the most common medications used to reduce pain and inflammation.

However, they act by inhibiting both COX-I and COX-II which can cause serious gastrointestinal side effects such as ulcers, stomach perforations and bleeds. COX-I produces prostaglandins believed to be responsible for the protection of the stomach lining. However, COX-II produces prostaglandins believed to be responsible for pain and inflammation.

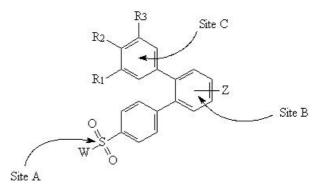

Recently, the most widely studied selective COX-II inhibitor such as celecoxib and rofecoxib' one work by inhibiting the effect of COX-II on pain and inflammation without inhibiting COX-I which protects gastrointestinal lining(Fig 1).

Fig 1. Other selective cyclooxygenase-2 (COX-II) inhibitors¹

Especially, the isoxazolyl compounds have little side effects and the effects of them are known already.

Based on the general structure, three important sites are suggested : sites A (methylsulfonyl moiety), sites B (central phenyl ring), and sites C (terminal phenyl ring containing different substituents) (Fig 2).

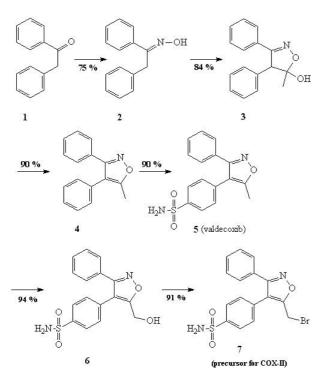


Fig 2. General structure of terphenyl methyl sulfones and sulfonamides : important imnteraction sites for COX-I/COX-II binding are indicated with arrows.

All three sites are important for COX-II binding while sites B and C are important for COX-I binding. For COX-II selectivity, only site C plays an important role.

2. Methods and Results

We prepared COX-II inhibitor which has isoxazolyl ring. The synthetic route for precursor (compound 7) employed deoxybenzoin(1) as a starting material and proceeded in 44 % overall yield through 6 steps which contain formation of isoxazolyl ring as a key reaction (Sch. 1).

Scheme 1. The preparation of precursor for COX-II inhibitor (compound 7)

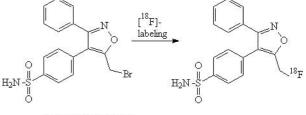

The selective COX-II inhibitor was labeled with 18 F *via* nucleophilic substitution reaction on the corresponding bromo precursor (compound 7) in high yield (table 1 & sch 2).

Table 1. Labeling with $[{}^{18}F]F$ - for the preparation of COX-II inhibitor *

Temp	Time	Yield(TLC yield)
80 °C	5 min	No reaction
80 °C	15 min	2 %
80 °C	30 min	20 %
95 °C	5 min	2 %
95 ℃	15 min	5 %
95 ℃	30 min	45 %
110 °C	5 min	15 %
110 °C	15 min	30 %
110 °C	30 min	55 %
125 °C	5 min	over 95 %
125 °C	15 min	over 95 %
125 °C	30 min	over 95 %
	80 °C 80 °C 80 °C 95 °C 95 °C 95 °C 110 °C 110 °C 125 °C 125 °C	80 °C 5 min 80 °C 15 min 80 °C 30 min 95 °C 5 min 95 °C 15 min 95 °C 30 min 110 °C 5 min 110 °C 15 min 110 °C 5 min 110 °C 5 min 1125 °C 5 min 125 °C 15 min

* Precedure for [18F] labeling

- A solution of 4 mg K_2CO_3 in 0.4 mL water was added to 10 mg Kryptofix 2.2.2 in 0.4 mL CH₃CN. To the dried K_2CO_3 / Kryptofix mixture, a solution of 2~3 mg precursor in 0.7 mL CH₃CN was added.

(precursor for COX-II)

Scheme 2. Labeling with [¹⁸F]F- for the preparation of COX-II inhibitor

In addition, we got a good result for stability test of labeled compound in serum (Fig. 3).

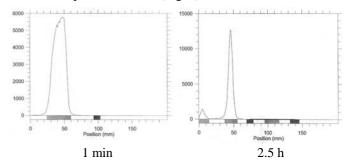


Fig 3. The stability test of labeled compound in serum at 37 $^\circ \rm C$

3. Conclusion

The selective COX-II inhibitor was labeled with ¹⁸F in high yield. [¹⁸F]COX-II inhibitor was obtained with 47 % decay corrected radiochemical yield and the radiochemical purity was over 95 %. Our selective COX-II inhibitor has a good stability in serum and the lipophilicity was around 1.55

We expect that these results are sufficient for animal and human studies. In this study, we will also prepare other COX-II inhibitors which are labeled with iodine. And the results for biological studies will be discussed.

REFERENCES

- 1. Jashim Uddin et al; *Bioorganic & medicinal chem. Lett.*, **2004**, *14*, 4911-4914
- 2. Santanu Chakraborty et al; *Bioorganic & medicinal chem. Lett.*, **2004**, *14*, 4665-4670