Fabrication of Ternary Oxide, (U, Ce, Gd)O₂

Sang Ho Na^a, Yeon Ku Kim^a, Han Soo Kim^a, Young-Woo Lee^a, Myung June Yoo^b

^a Korea Atomic Energy Research Institute, 150 Dukjin-dong, Yuseung-gu, Daejeon 305-353, Korea, shna@kaeri.re.kr ^bKEPCO Nuclear Fuel Company, Ltd., 493 Dukjin-dong, Yuseung-gu, Daejeon 305-353, Korea

1. Introduction

MOX(Mixed Oxide), (U, Pu)O₂, is an alternative nuclear fuel to increase uranium efficiency and to use recycled plutonium in the nuclear power reactors. The increased content of PuO₂ leads to a high burn-up. Gadolinia, Gd_2O_3 , is an efficient neutron absorber, and the solid solution type of UO_2 -Gd₂O₃ has been widely used as a burnable poison in most nuclear power reactors[1,2]. However, few study on the fabrication of MOX-Gd₂O₃ fuel has been reported[3].

In this work, feasibility of fabrication of ternary system oxide, UO_2 -10wt%CeO_2-Gd_2O_3(4, 6wt%) is examined. CeO_2 powder was used as surrogate of PuO_2, owing to its high temperature material properties.

2. Methods and Results

2.1 Experimental methods

Fig. 1 shows a schematic DM(Dynamic Mill). The DM jar revolves at 25 rpm. Zirconia ball (dia. 8 mm) loaded into the jar with 70% of the volume of the jar. Sample size is 50g of a UO_2 -10wt%CeO_2-Gd_2O_3 powder mixture. Fig. 2 shows a fabrication flow sheet of the (U,Ce,Gd)O_2 pellet . And the relevant details(powder preparation, fabrication condition, etc) are given in this figure. The sintered density and grain size of these sintered pellets are determined from an immersion method and a linear intercept method, respectively.

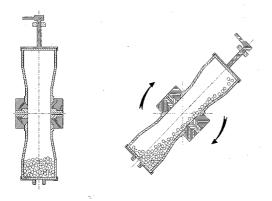


Fig. 1 Schematic diagram of a Dynamic Mill

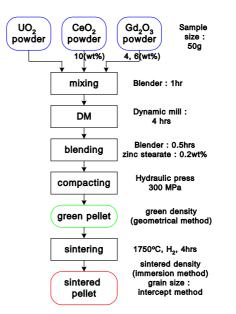


Fig. 2. Fabrication flow sheet of (U,Ce,Gd)O₂ pellet

2.2 Results and discussion

Fig. 3 shows sintered densities and grain sizes of UO₂-10wt%CeO₂-Gd₂O₃ as a function of Gd₂O₃ content. As shown in this figure, sintered densities of UO₂-10wt%CeO₂-Gd₂O₃ show higher densities(about 97.5%T.D.) and larger grain sizes(about 17~18µm), regardless of content of Gd₂O₃. Fig. 4 shows the microstructures of (U,Ce,Gd)O₂ sintered pellet. This figure shows an uniform and homogeneous grain structure with different contents of Gd₂O₃. Therefore, in view of fabrication process, it is thought to be possible to fabricate this ternary oxide sintered pellets, which have good physical properties.

3. Conclusion

The feasibility of fabrication on the ternary oxide, (U, Ce, Gd) O_2 was studied. Results are as following.

- The sintered densities and grain sizes of UO₂-10wt%CeO₂-(4, 6wt%) Gd₂O₃ sintered pellet show high values as much as other binary oxides.

- Therefore, it is possible to fabricate the (U, Ce, $Gd)O_2$ pellet which has good quality, and a similar

result can be expected when PuO_2 is used instead of CeO_2 .

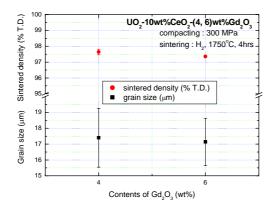


Figure 3. Sintered density and grain size of UO_2 -10wt%CeO₂-Gd₂O₃ as a function of Gd content.

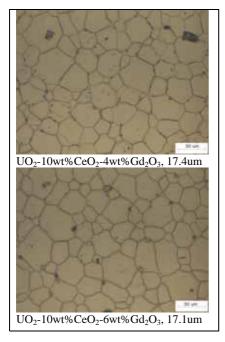


Fig.

4.

Microstructures of UO_2 -10wt% CeO_2-Gd_2O_3 as a function of Gd_2O_3 content.

REFERENCES

- [1] IAEA-TECDOC-844
- [2] IAEA-TECDOC-544, February 1991
- [3] M. Gato, S. Kohno and K. Kamimura, IAEA Tech. Committee Mtg. on Advances in Pellet Technology for Improved Performance at High Burnup, Tokyo, Japan. 28 Oct-1 Nov., 1996

Acknowledgement

This work has been carried out under the Nuclear R & D program by the Ministry of Science and Technology (MOST), Korea.