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1. Introduction 
 

In Monte Carlo computation, many practitioners 
estimate statistical error through sample variance. But 
the sample variance is biased in Monte Carlo criticality 
calculations because the fission source distributions 
(FSDs) are correlated cycle-to-cycle [1,2,3,4]. When 
the dominance ratio is close to unity, the inter-cycle 
correlation becomes strong and the sample variance is 
quite different from the real variance [3]. 

A mathematical model for the correlation between 
FSDs in successive cycles was developed by Gelbard 
and Prael [1]. In this model, the error of FSD at a 
certain cycle is expressed by the stochastic errors that  
propagates cycle-by-cycle. The cycle-by-cycle error 
propagation model has been used for predicting the 
behavior of the inter-cycle correlation of k or local 
region’s tallies [2,3]. 

This paper is designed to demonstrate that inter-cycle 
correlation coefficient between FSDs can be calculated 
by utilizing cycle-by-cycle error propagation model in 
combination with the fission matrix constructed from a 
single Monte Carlo run. To do so, an estimation method 
for stochastic errors has been presented. Both the 
stochastic error’s covariances and correlation 
coefficients are calculated to validate the suggested 
method. It is shown that the combination of error 
propagation model with the fission matrix method 
facilitates estimation correlation coefficients between 
FSD’s L cycle apart, which are key parameters 
characterizing the FSD convergence criteria. 

 
2. Methods and Results 

 
2.1 Cycle-by-cycle Error Propagation Model 

 
The discrete Monte Carlo calculations can be 

expressed by the fission matrix eigenvalue equation of 
zone-wise FSD as follows: 
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H  and k  are the fission matrix and the multiplication 
factor, respectively. 

Due to statistical nature of fission source sampling 
and the enthusing particle history tracking, the FSDs 
are unavoidably associated with errors. The errors of 
FSD in the cycle-to-cycle error propagation model [1,3] 
can be given by 
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where  
t =e  fluctuating component of FSD at t-th cycle 

t =ε  stochastic errors generated at cycle number t 
0A  is defined by 
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where (1,1, ,1)Tτ = L . 0k and 0S  are a maximum 
eigenvalue and corresponding eigenvector of Eq. (1). 

From Eq. (2), the FSD error of m-th cell is written as 
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where t
mma ′

′  is a m-th row and m′ -th column element of 
matrix ( )t ′

0A  and it means a error propagation ratio at 
m-th cell by a error generated at m′ -th cell and t′  
previous cycle. 

 
2.2 FSD Variance and Covariance 
 

It is assumed that the stochastic error generated at 
cycle t is independent with the accumulated errors of 
previous cycles and the stochastic errors generated at 
other cycles: This means 
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where i and j are cycle indexes, m and m′  are cell 
indexes. 

Then, from Eqs. (4) and (5), the covariance between 
t
mS  and t l

mS +
′  can be expressed as  
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In the following analysis, it is assumed that 
[ ]t t l

m mE ε ε +
′  is independent of the cycle number t at 

stationary cycles from the property of equilibrium. 
Then assuming the covariance of FSDs l cycles apart 
depends only on the cycle difference l, one can 
introduce the lag l covariance as 
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[ ]n nE ε ε ′  in Eq. (7) means the covariance between 

nε  and nε ′  because [ ] 0nE ε = . Then, it follows 
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By the definition of variance, the variance of mS  is 
the same as the covariance at 0l =  for the same cell. 
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2.3 Covariance of Stochastic Error 

 
E. M. Gelbard and R. E. Prael suppose that in each 

generation the probability that a typical particle will be 
assigned to the n-th cell is equal to nM M  where nM  
is an average number of fission source neutrons which 
are generated in the n-th cell and M is the total number 
of fission sources per cycle [1]. Under these assumption, 
cov[ , ]n nε ε ′  can be expressed as 
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Using the eigenvector of Eq. (1) corresponding to the 
maximum k , Eq. (10) can be calculated by  
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where 0nS  is the n-th element of the eigenvector. 
However, in the realistic Monte Carlo particle 

simulations the probability that a particle will be 
assigned to the n-th cell varies from the source 
particle’s location, energy, and direction. 

Therefore, cov[ , ]t t
n nε ε ′  should be estimated from the 

simulation results of fission sources composing t-th 
cycle as 
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where ( )t
m iS  is the fission source density of m-th cell by 

i-th source at t-th cycle. 
And cov[ , ]n nε ε ′  can be estimated as 
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where N is a active cycle number. 
cov[ , ]n nε ε ′  can be calculated indirectly by the 

simple simultaneous equation of the sample covariances 
of FSDs. 
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Table 1 shows the comparison of the standard 
deviations calculated by three methods in the SMART 
core problem. From the table, we can see that the 
standard deviations by Eq. (13) and (14) are similar. 
Table 1 Comparison of variance of stochastic error for 
SMART core 

Assem. Idx. by Eq. (14) by Eq. (13) by Eq. (11) 
1 6.72E-04 6.69E-04 4.58E-04 
2 1.25E-03 1.31E-03 8.95E-04 
3 1.25E-03 1.30E-03 8.73E-04 
4 1.27E-03 1.28E-03 8.60E-04 
5 1.60E-03 1.75E-03 1.16E-03 
6 1.27E-03 1.24E-03 8.57E-04 
7 1.20E-03 1.24E-03 8.48E-04 
8 1.58E-03 1.64E-03 1.11E-03 
9 1.41E-03 1.49E-03 1.06E-03 

10 9.28E-04 9.38E-04 6.98E-04 
11 1.03E-03 1.12E-03 8.77E-04 

 
2.4 Inter-cycle Correlation Coefficient 
 

From Eq. (8) and (9), the inter-cycle correlation 
coefficient of FSDs can be calculated by 
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Figure 1 shows the correlation coefficient of FSD 
calculated by Eq. (15) using Eq. (13) as the stochastic 
error’s covariance. 
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Figure 1 Inter-cycle correlation coefficient for the SMART 
core 

3. Conclusion 
 

The inter-cycle correlation coefficient was calculated 
by the cycle-to-cycle error propagation model from the 
precise stochastic error’s covariance. From the 
numerical results, we can see that the correlation 
coefficient by the cycle-to-cycle error propagation 
model can predict the real correlation really well. 
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