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1. Introduction 
 

Many nodal codes for core simulation adopt the 
micro-depletion procedure for the depletion analysis. 
Unlike the macro-depletion procedure, the micro-
depletion procedure uses micro-cross sections and 
number densities of important nuclides to generate the 
macro cross section of a spatial calculational node. 
Therefore, it needs to solve the chain equations of the 
nuclides of interest to obtain their number densities. 

There are several methods such as the matrix 
exponential method (MEM) [1] and the chain 
linearization method (CLM)[2] for solving the nuclide 
chain equations. The former solves chain equations 
exactly even when the cycles that come from the alpha 
decay exist in the chain while the latter solves the chain 
approximately when the cycles exist in the chain. The 
former has another advantage over the latter. Many 
nodal codes for depletion analysis, such as MASTER 
[2], solve only the hard coded nuclide chains with the 
CLM. Therefore, if we want to extend the chain by 
adding some more nuclides to the chain, we have to 
modify the source code. In contrast, we can extend the 
chain just by modifying the input in the MEM because 
it is easy to implement the MEM solver for solving an 
arbitrary nuclide chain. In spite of these advantages of 
the MEM, many nodal codes adopt the chain 
linearization because the former has a large round off 
error when the flux level is very high or short lived or 
strong absorber nuclides exist in the chain. 

In this paper, we propose a new technique to remove 
the round off errors in the MEM and we compared the 
performance of the two methods. 

 
2. Methods and Results 

 
2.1 Matrix Exponential Method  
 
The ordinary differential equation for a given nuclide 

chain can be expressed in matrix form as follow: 
 

ANN =dtd ,                              (1) 
              where N :  number density vector, 
             A : coefficient matrix. 
 
It is trivial to show that the solution of Eq. (1) is  
 

( ) ( ) ( )0exp NAN tt = .                    (2) 
 
Taylor’s series expansion is used to evaluate the 

exponential term in Eq. (2) as follow : 
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Inserting Eq. (3) into Eq. (2), we obtain the following : 
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where ( ) )1()( −= mm mt ANN , )0()0( NN = . 
 
The summation procedure in Eq. (4) stops when 

)1( +MN  is so small that the following terms can be 
ignored. 
 

2.2 Round off Errors in the Matrix Exponential Method 
  

The jth diagonal term of the matrix A  is 
( )φσλ j

a
j +− . If the jth nuclide is a short lived or strong 

absorber nuclide or the flux level is very high, the 
absolute value of the diagonal term becomes large and 
it causes a very large round off error. 

Let’s consider a 1x1 case of A  for simplicity. The 
value of  )0.20exp(−  can be evaluated by the following 
Taylor’s expansion: 
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The expansion in Eq. (5) converges mathematically 

and the value is approximately -9102.06115× . However, 
we get -9105.62188×  due to the round off error if we 
evaluate it using a double precision variable which has 
about 16 digit effective precision. The large round off 
error comes from the fact that the largest term in 
absolute value in the summation is approximately 

7104.30998- × . It means that we subtract a huge 
number from another huge number to get a tiny number, 
which is the cause of the loss of the precision. We need 
at least 19 digits to get more than a 3 digit precision. In 
contrast, when we evaluate )0.20exp(  we loose no 
precision because all the terms in the summation are 
positive.  

Noting that only the diagonal elements of the matrix 
A  are negative, we can remove the round off error in 
evaluating Eq. (4) using the following identity: 
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where IAA λ−='  
 
If we use the largest diagonal element of matrix A  in 

absolute value as λ , we can make all the elements of 
'A  nonnegative and we can remove the loss of 

precision. However, we choose λ  properly to make the 
most negative diagonal element of the matrix 'A  be      
-13.815 in the actual implementation so that no 
significant loss of precision can arise. 

 
2.3 Application and Result 
 

Figure 1 shows the heavy nuclide chain which is 
commonly used in nodal codes for depletion analysis 
and Table 1 shows the typical one-group cross sections 
and decay constants of the nuclides in the chain [2]. 
 

 
Figure 1 Typical Heavy Nuclide Chain 

 
Table 1 Typical one-group cross sections and the decay 

constants of the nuclides in the chain 
Nuclide aσ  

 (barns) 
cσ  

 (barns) 
)2,( nnσ  

(barns) 
λ  

 (sec-1) 
U235 
U236 
U238 

Np237 
Np239 
Pu238 
Pu239 
Pu240 
Pu241 
Pu242 
Am241 

Am242m 
Am243 
Cm242 
Cm244 

4.32467E+01 
6.97011E+00 
9.44159E-01 
3.24165E+01 
1.65286E+01 
2.98800E+01 
1.16503E+02 
1.79394E+02 
1.09738E+02 
3.54136E+01 
8.89344E+01 
5.69911E+02 
5.18868E+01 
4.56404E+00 
1.73249E+01 

8.17256E+00 
6.65920E+00 
8.29020E-01 
3.18610E+01 

- 
2.75977E+01 
4.07190E+01 
1.78761E+02 
2.82835E+01 
3.49450E+01 
8.78909E+01 
9.46616E+01 
5.14110E+01 

- 
- 

- 
- 

5.02019E-03 
- 
- 
- 
- 
- 
- 
- 
- 
- 
- 
- 
- 

- 
- 
- 
- 

3.441e-06
- 
- 
- 

1.536e-09
- 
- 
- 
- 

4.922e-07
- 

 
Table 2 shows the initial condition and the solutions 

of various methods. The exact solution at 1.728e+6 sec 
(20 days) with flux level of 2.06357e+14 #/cm.sec was 
obtained using MATHEMATICA. The MEM also 
gives the exact solution while the CLM gives an 
approximate solution though the error is very small. 

Table 3 shows the conventional MEM and the 
revised MEM (RMEM) using Eq. (6). In this case, the 
half life of the Np239 was halved to magnify the round 
off error. The error of the Np239 in the conventional 
MEM is greater than 4000% but practically all the 
round off error was removed by the RMEM. 

The CPU time of the RMEM is slightly shorter than 
that of CLM. The CPU time of the RMEM was 10.7 
μ sec when 1.0e-6 was given as the convergence 

criteria while that of CLM was 12.7 μ sec. The 
compressed sparse row (CSR) data structure [4] was 
used to represent the matrix A  in the RMEM for the 
efficiency of calculation. 

 
Table 2 Initial condition and the solutions of various 

methods. 
Nuclide N(0) 

(#/barn-cm) 
N(20days) 

(Exact) 
Error of 

MEM (%) 
Error of 

CLM  (%)
U235 
U236 
U238 

Np237 
Np239 
Pu238 
Pu239 
Pu240 
Pu241 
Pu242 
Am241 

Am242m
Am243 
Cm242 
Cm244 

1.17975E-03 
6.13658E-05 
2.13599E-02 
1.79179E-06 
1.05257E-06 
1.27992E-07 
7.34848E-05 
6.84912E-06 
2.60075E-06 
1.19625E-07 
2.98219E-08 
4.23231E-10 
5.23399E-09 
1.78703E-09 
2.77381E-10 

1.16170E-03 
6.46209E-05 
2.13527E-02 
1.95795E-06 
1.06057E-06 
1.49068E-07 
7.66660E-05 
7.48101E-06 
2.94174E-06 
1.46032E-07 
3.61277E-08 
4.76517E-10 
6.79026E-09 
1.26258E-09 
3.85104E-10 

0.00 
0.00 
0.00 
0.00 
0.00 
0.00 
0.00 
0.00 
0.00 
0.00 
0.00 
0.00 
0.00 
0.00 
0.00 

0.00 
0.00 
0.00 
0.00 
0.00 
0.00 
0.01 
0.00 
0.00 
0.00 
0.00 
0.00 
0.00 
-0.07 
0.00 

 
Table 3 Solution of MEM with short half live of Np239 

Nuclide 
N(0) 

(#/barn-cm) 
N(20days) 

(Exact) 
Error of 

MEM (%) 
Error of 

RMEM (%)
U235 
U236 
U238 
Np237 
Np239 
Pu238 
Pu239 
Pu240 
Pu241 
Pu242 
Am241 

Am242m
Am243 
Cm242 
Cm244 

1.17975E-03 
6.13658E-05 
2.13599E-02 
1.79179E-06 
1.05257E-06 
1.27992E-07 
7.34848E-05 
6.84912E-06 
2.60075E-06 
1.19625E-07 
2.98219E-08 
4.23231E-10 
5.23399E-09 
1.78703E-09 
2.77381E-10 

1.16170E-03 
6.46209E-05 
2.13527E-02 
1.95795E-06 
1.52184E-07 
1.49068E-07 
7.75434E-05 
7.49325E-06 
2.94212E-06 
1.46033E-07 
3.61281E-08 
4.76517E-10 
6.79026E-09 
1.26258E-09 
3.85104E-10 

0.00 
0.00 
0.00 
0.00 

4175.25 
0.00 

24.55 
0.10 
0.00 
0.00 
0.00 
0.00 
0.00 
0.00 
0.00 

0.00 
0.00 
0.00 
0.00 
0.00 
0.00 
0.00 
0.00 
0.00 
0.00 
0.00 
0.00 
0.00 
0.00 
0.00 

 
3. Conclusion 

 
In this paper, a technique to remove the round off 

error in the MEM for solving the nuclide chain was 
proposed. The numerical test shows that practically all 
the round off errors was removed by the technique. 

The revised MEM with this has several advantages 
over the CLM. The RMEM solves the chain exactly 
regardless of the existence of cycle in the chain. It is 
easy to implement a RMEM solver to solve the general 
nuclide chain. The CPU time of the RMEM is shorter 
than CLM though the difference is small. 
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