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1. Introduction 
 

Reactor deviation from the critical state is a 
parameter of specific interest defined by the reactivity 
( ρ ). Reactivity ρ is an extremely important quantity 
used to define many of the reactor startup physics 
parameters. The time-dependent reactivity is normally 
determined by solving the using inverse neutron 
kinetics equation. The reactivity computer is a device to 
provide an on-line solution of the inverse kinetics 
equation. The DDRCSTM (Direct Digital Reactivity 
Computer System) is presently used in Korean nuclear 
power plants during initial plant startup and for 
recurrent physics tests. The input signal to DDRCS TM 
is provided by the excore neutron detectors. The 
measurement signal of the neutron density is normally 
noise corrupted since the measurement system has no 
provision for a neutron distribution which neutrons are 
generated from fission or non-fission process. 
Therefore the neutron signal or the calculated reactivity 
should be filtered properly to give sufficiently large 
signal-to-noise ratio to prevent a high degree of 
interpretational uncertainty. This paper describes a 
kernel regression based noise smoother for that purpose.  

Kernel based methods are most popular non-
parametric estimators which can uncover structural 
features in the data which a parametric approach might 
not reveal.  

In this paper, the performance of the kernel 
regression smoothing method is demonstrated for the 
measured reactivity signal contaminated with noise. 
The results show the developed smoother can be 
applied not only the noise smoothing but also bumpless 
follow of the signal with non-smooth edge. 

 
2. Methods and Results 

 
In this section some of the mathematical techniques 

in kernel regression are described.  
 

2.1 Kernel Regression 
Kernel regression is an old method for smoothing 

data still new work continues at a rapid pace. Kernel 
regression of statistics was derived independently by 
Nadaraya[1] and Watson[2]. Kernel regression[3] is the 
estimation of the functional relationship ( )y t  between 
two variables y and t . Measurement produces a set of 
random variables { , ; 1,..., }i it y i N=  on the interval 

{0 }it T≤ ≤ . It is assumed that 

( )i iy y t ε= +                           (1) 
where ε  is a random noise variable with the mean 
equal to zero. The Nadaraya–Watson kernel regression 
estimate ( )y t of at t τ= from this random data is 
defined as the estimator ˆ( )y τ  as  
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  The function ( )ik tτ −  is the kernel function which 
can be chosen from a wide variety of symmetric 
functions. In this paper, the Gaussian density function 
is used, i.e., 

2 2( ) exp( ( , ) / )i qk t D t t σ= −                (3) 

where D is the distance metric and Euclidean distance 
is used here defined by  

2( , ) ( )i q i q i qD t t t t t t= − = − .             (4) 

qt  is the query point where the smoothed signal is to be 

generated in the interval of time series data {0 }it T≤ ≤ . 
2σ  is the bandwidth of the kernel. 2σ  is a scaling 

factor which controls how wide the influencing 
measurements are spread around a query point. 
Bandwidth can also control the smoothness or 
roughness of a density estimate. Increasing the kernel 
width 2σ  means further away points get an opportunity 
to influence the query point. As 2σ →∞ , the 
smoothed signal tends to the global average. 
 
2.2 Illustrative Example 
   Figure 1 shows an example of the smoothing 
performance. For 2 10σ = , it is nice to see a smooth 
curve at last but rather bumpy. If 2σ  gets any higher, 
the smoothing is poor. As increasing 2σ , it is clearly 
not capturing the structure of the data. Note  the 
smoothed curve becomes almost  the average value of 
the raw data for 2 500σ = . Large values of 2σ  produce 
high bias and low variance and vice versa. Experience 
shows what 2σ  we choose is more important than 
which kernel we choose.  

Figure 2 gives the calculated weights for each values 
of 2σ . The weights shown are calculated for 
influencing the query point 15.0it =  for illustrative 



 

purpose. We can find only 2~3 neighboring points have 
non-zero weights for 2 10σ = . For 2 500σ = , all of the 
data points are influencing the query point 15.0it =  
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Figure 1.  Effect of smoothing with  2σ  variation 
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Figure 2.  Variation of kernel ( )ik t with  2σ  
 
2.3 Reactivity Smoothing 

Figure 3 shows the smoothing performance of the 
kernel smoother for noisy reactivity signal measured 
during external dynamic test at Kori unit  4 cycle 16. As 
shown in the figure, the reactivity estimation error can 
increase up to 4~5 pcm if ad hoc averaging is used. In 
some cases, this amount of erroneous estimate can 
affect the reactor physics test results. The kernel 
bandwidth 2 10σ = is used. The smoothing 
performance is definitely superior to Savitzky-Golay 
smoother or FFT filter. 

Figure 4 gives the smoothing performance of the 
kernel smoother close to edge or corner point. Kernel 
smoother can reconstruct the original signal with 
minimum over- or undershot compared with well 
known smoothing algorithms. This kind of stepwise 
variation of reactivity is frequently found during reactor 
startup physics test from movement of control rods. 
Therefore the reconstruction capability of the edge 

points is an important characteristic of the reactivity 
smoother. 
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 Figure 3.  Noisy reactivity measurement during 
external dynamic test at Kori unit  4 cycle 16.  

    Figure 4.  Performance of kernel smoother close to 
edge or corner point 

  
3. Conclusion 

 
Kernel based noise smoothing technique is developed 

and successfully applied to digital reactivity meter. 
Using the smoother, the reactivity estimation error can 
be minimized during the reactor startup physics tests. 
The performance of the algorithm is demonstrated 
comparing with well known smoothing methods for 
real measurement signal. The method can also be 
applied to edge or corner points important to reactivity 
variation. 

REFERENCES 
[1] E. A. Nadaraya, “On estimating regression,” Theory 
Probab. Appl., vol. 10, pp. 186–190, 1964. 
[2] G. S.Watson, “Smooth regression analysis,” 
Sankhya Ser. A, vol. 26, pp. 101–116, 1964. 
[3]  A. Moore et. al., “Efficient Locally Weighted 
Polynomial Regression Predictions,” Proceedings of the 
Fourteenth International Conference on Machine 
Learning, pp. 236-244, 1997. 


	분과별 논제 및 발표자

