Study on the Properties of Gd_xTi_vO_z Pellets.

Kim Jeong Seok[†], Kim Han Soo, Jeong Chang Young, Kim Si Hyung Advanced Nuclear Fuel Department, Korea Atomic Energy Research Institute cera4@lycos.co.kr

1. Introduction

In nuclear power generation, the excess reactivity is needed to compensate for fuel burn-up, fission product poisoning and loss of reactivity due to changes in temperature of fuel, moderator and other core constituents. However, the energy production cost can be reduced by increasing the fuel burn-up with extended cycle. In order to extend the fuel cycle, the fuel assemblies loaded at the beginning of a reactor cycle should have some more amount of excess reactivity. This means in turn the excess reactivity to be controlled.

Gadolinia, which is nuclear burnable poison because of the presence of ¹⁵⁵Gd and ¹⁵⁷Gd, is blended with TiO₂ into so called gadolinium titanite pellets in which a Gd density range of 2.00-4.70g/cm³ is uniformly contained in the Gd_xTi_yO_z pellets. ^{[1][2]}

The sinterability of Gd_2O_3 +TiO₂ mixed oxides was tested for various mixing ratios and sintering parameters, and Gd density, sintered density and XRD phases of $Gd_xTi_yO_z$ pellets were evaluated in this study.

2. Experimental

The mixing ratio of Gd_2O_3/TiO_2 was calculated according to the Gd density and sintered density of $Gd_xTi_yO_z$ pellet. The weighed amount of both Gd_2O_3 and TiO_2 was blended in a Turbula mixer for 1h, then milled by using Planetary mill with a zirconia jar containing 10mm zirconia balls at a rotation speed of 300rpm for 1h. The milled powder was pressed into cylindrical compacts using a double-acting hydraulic press under 300MPa. The 2.00 Gd g/cm³ pellets of different Gd density were sintered at 1400 and 1450 , and the 4.20, 4.64 and 4.70 Gd g/cm³ pellets were sintered at 1600 and 1650 in air atmosphere for 4hr. Density of sintered pellet was measured by water immersion method. Ceramography of the pellets was done and pore structure was analyzed by using image analysis system on the polished sections. XRD on the pellet was analyzed by using Cu target(K α 1.54056) with sampling width of 0.02degree and scanning speed of 4.00 deg/min.

3. Results

3.1 X-ray diffraction studies

The XRD patterns of $Gd_xTi_yO_z$ sintered at 1650 with different Gd contents are shown in Fig. 1. It was observed that Gd_2TiO_5 and $Gd_2Ti_2O_7$ phases in the 4.2g Gd g/cm³ of $Gd_xTi_yO_z$ sintered pellets from the XRD patterns. The 4.637g Gd g/cm³ was Gd_2TiO_5 and the 4.7g Gd g/cm³ was Gd_2TiO_5 . Fig. 2 shows 2.0 Gd g/cm³ XRD patterns. It was observed that TiO_2 and $Gd_2Ti_2O_7$ phases in the 2.00g Gd g/cm³ of $Gd_xTi_yO_z$ sintered pellets.

3.2 Sinterability

Fig. 3 shows the changes of the sintered density with the Gd contents of $Gd_xTi_yO_z$ at different sintering

processes. The changes of sintered density were rather affected by the different Gd contents than by the temperature changes. The 4.70g Gd g/cm³ density was higher than the others. 4.20 Gd and 4.64 Gd densities were nearly not different. Density of 2.00g Gd g/cm³ of Gd_xTi_yO_z sintered pellets was 5.26 g/cm³ at 1400 and 5.29 g/cm³ at 1450 . Fig. 4 shows the micrographs of Gd_xTi_yO_z with Gd contents. It was observed that a lot of white spots in the 4.20 Gd g/cm³ micrograph. This was reduced as the increasing Gd contents. It was comfirmed that the spots were Gd₂Ti₂O₇ phase considering the XRD patterns.

Fig. 1. XRD patterns of $Gd_xTi_yO_z$ pellets sintered at 1650 with different Gd contents ; (a) 4.20 Gd g/cm³, (b)4.64 Gd g/cm³, (c)4.70 Gd g/cm³

Fig. 2. XRD patterns of $Gd_xTi_yO_z$ pellet sintered at 1450 with Gd density of 2.00 Gd g/cm³.

Fig. 3. Densities of Gd_xTi_yO_z pellets sintered at 1600 and

1650 as function of Gd content.

Fig. 4. Photos of microstructure of $Gd_xTi_yO_z$ pellets.; (a) 2.00 Gd g/cm³, (b) 4.20 Gd g/cm³, (c) 4.64 Gd g/cm³, (d) 4.70 Gd g/cm³

4. Conclusionc

- The XRD patterns of the Gd_xTi_yO_z pellets with the Gd density ranges of 4.64-4.70g/cm³ only show Gd₂TiO₅ peaks as increasing Gd contents.
- Gd₂Ti₂O₇ phase was observed on the microstructure as the white spots.
- 3. The density of $Gd_xTi_yO_z$ pellets was rather affected by the changes of Gd contents than by the temperatures.

Acknowledgment

This study was performed under the auspices of the Korea Ministry of Science and Technology.

Reference

 V. D. Risovany, E. E. Varlashova and D. N. Suslov, Dysprosium Titanate as an Absorber Material for Control Rod, J. Nucl. Mater, 281 84-9, 2000.

[2] Marielle Asou and Jacques Porta, Prospects for poisoning reactor cores of the future, Nu clear Engineering and Design, 168 p.261, 1997