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1. Introduction 
 

As the nuclear reactor core becomes more complex, 
heterogeneous, and geometrically irregular, the method of 
characteristics (MOC)1 is gaining its wide use in the neutron 
transport calculations. However, the long computer times 
require good acceleration methods. In our previous paper, the 
concept of coarse-mesh angular dependent rebalance 
(CMADR)2,3 acceleration was described and applied to the 
MOC calculations. The method is based on angular dependent 
rebalance factors defined on the coarse-mesh boundaries; a 
coarse-mesh consists of several fine meshes that may be (1) 
heterogeneous and (2) of mixed geometries with irregular or 
unstructured mesh shapes. In addition, (3) the coarse-mesh 
boundaries may not coincide with the structural interfaces of 
the problem and can be chosen artificially for convenience. 
The CMADR acceleration method on the MOC scheme that 
enables the very desirable features (1), (2), and (3) above is 
new in the neutron transport literature to the best of the 
authors’ knowledge. In this paper, we analyze the 
convergence of CMADR acceleration for MOC calculation in 
x-y-z (infinite) geometry by using Fourier analysis. 
 

2. Coarse-Mesh Angular Dependent Rebalance  
(CMADR) Method 

 
In MOC calculations in x-y-z (infinite) geometry, for fine 
mesh i with flat source approximation, the outgoing angular 
flux along ray r and the average angular flux are given as 
follows: 
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where l is the iteration index, m and n are azimuthal and polar 
angle indices respectively, nθ  is n-th polar angle, r

inmL ,,
 is the 

projected track length of r-th ray on mesh i in (m,n) direction, 

iA  is the area of mesh i, and r
mδ  is the ray spacing of ray r in 

m-th azimuthal angle. 
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Figure 1. A coarse mesh and computational meshes 

The angular dependant rebalance factors are defined on the 
coarse mesh boundaries t: 
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where direction (m,n) is in quadrant γ . 
Using the MOC equation and the rebalance factors defined in 
Eq. (3), the rebalance equations are obtained as follows: 
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In addition to Eq. (4) the update equations are obtained as 
follows: 
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The CMADR equations [Eqs. (4) and (5)] resemble DP0 
transport equations and we can solve these equations by 
transport-like sweep or the Krylov subspace method4. Also, 
the basic coefficients can be calculated and stored before the 
iteration. Moreover, if modular ray tracing is used in 
calculation, only several coefficients are stored according to 
cell types. In this paper we use the CRX code5,6,7 for MOC, 
which uses modular ray tracing and BiCGSTAB method to 
reduce computing time to solve the CMADR equations. 
We applied the method to a test problem. The test problem is 
a homogeneous medium with vacuum boundaries but the 
source whose density is 1.0 cm-3sec-1 is located at the inner 
square only as shown in Fig. 2. The problem consists of 
16x16 coarse meshes and a coarse mesh contains 24 
computational meshes. The radii of circles are 0.45cm and 
0.35cm. Scattering ratio is 0.999, angles are (8,4), and the 
number of rays is 50. Convergence criteria for high- and low-
order calculations are 10-5. Table I shows that CMADR is 
about 36 times faster in the number of iterations and 11 times 
faster in computing time than the original CRX code. 
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Figure 2. Configuration of test problem 

 
Table I. Results of test problem 

 CRX CRX-CMADR Speedup
Number of 
iterations 332 9 36.89 

Computing time 
(sec) 1551.67 134.41 11.54 



3. Fourier analysis 
 

The Fourier analysis is the most popular technique that 
analyzes iterative schemes and it can apply only to linear 
methods. But Cefus and Larsen8,9 successfully applied this 
technique to the analysis of CMR and PDO iterative schemes 
through linearization.  
In slab geometry, it was shown numerically and Fourier 
analytically [2] that CMADR is unconditionally stable for 
various transport discretization schemes. Our numerical 
experience indicates that CMADR on MOC scheme in two-
dimensional problems is also unconditionally stable. Thus in 
this section we investigate the convergence of the CMADR 
method on MOC in x-y geometry theoretically by the Fourier 
analysis following the Cefus and Larsen’s approach. 
The test problem is a model problem of the infinite 
homogeneous medium containing uniform source with square 
fine meshes. The scattering ratio is 0.999 and the number of 
rays per direction is 4. Fig. 3 shows the results of Fourier 
analysis for two cases of coarseness p for the MOC 
calculation with one angle per quadrant (the angle is 
(45o,45o)). Fig. 4 shows the results of Fourier analysis for two 
angular sets. The spectral radii are always less than unity (and 
very small) regardless of the mesh size. The maximum 
spectral radius occurs at the zero limit of the mesh size. We 
ascertain from the results (and this can be confirmed in the 
one-dimensional case) that the maximum spectral radius is 
bounded above by c/3 with regard to the increasing angular 
orders. 
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Figure 3. Results of Fourier analysis for two coarseness 
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Figure 4. Results of Fourier analysis for two angular sets 

 

4. Conclusions 
 

In this paper, the MOC transport calculation was accelerated 
by the coarse-mesh angular dependent rebalance (CMADR) 
method. The CMADR method is based on the ADR factor 
concept, in which the rebalance factors are angular dependent 
and defined only on the coarse-mesh boundaries. The coarse 
mesh can be overlayed on a collection of fine meshes that 
may be heterogeneous and of mixed geometries with irregular 
or unstructured mesh shapes. This is possible due to the 
capability of the MOC. Furthermore, the coarse-mesh 
boundaries may or may not coincide with the structural 
interfaces of the problem and can be chosen flexibly for the 
convenience of analysis. The CMADR method on MOC was 
tested successfully on a test problem and the results showed 
that it is very effective in reducing the number of iterations 
and computing time. We also performed Fourier convergence 
analysis on a model problem of x-y-z (infinite) geometry. The 
results of the Fourier analysis indicate that CMADR 
acceleration on MOC is unconditionally stable with small 
spectral radius. 
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