A Study on the Sinterability of the Simulated Dry Recycling Nuclear Fuel Pellets with the Addition of Sintering Aids for 1 cycle OREOX Treated Powder

Woong Ki Kim, Jae Won Lee and Jung Won Lee Korea Atomic Energy Research Institute, 150 Duk-jin Dong, Yusong, Taejon, wkkim@kaeri.re.kr

1. Introduction

The OREOX(Oxidation and REduction of OXide fuel) process has been performed to fabricate dry recycling nuclear fuel pellets. The sinterable fuel powder was manufactured by the 3 cycles of oxidation and reduction treatment. A lot of time more than 37 hours as well as a lot of reaction gas is required to perform 3 cycles of OREOX treatment[1-4]. In this study, 1 cycle OREOX process was adopted to improve the powdering process for the simulated dry recycling nuclear fuel pellets with burnup of 35,000 MWd/tU. Simulated spent PWR fuel pellets were fabricated by using the UO₂ powder added by the simulated fission products. The simulated dry-recycling-fuel pellets were fabricated by dry recycling fuel fabrication flow including 1 cycle treated OREOX process. A small amount of dopant such as TiO2 or Nb2O5[5-7] are added to increase the sinterability of the OREOX treated powder.

2. Simulated Spent PWR Fuel Pellets

Fission products were analyzed by ORIGEN-2 code based on spent PWR fuel with burnup of 35,000 MWd/tU. Simulated spent PWR fuel pellets were fabricated by the general fabrication process for UO_2 nuclear fuel mixed with the simulated fission products. The average density of the sintered pellets was 10.39 g/cm³.

3. Simulated Dry Recycling Nuclear Fuel Pellets

The simulated spent PWR fuel pellets were treated through the one cyclic OREOX process, where the oxidation temperature was 500 °C, and the reduction temperature was 700 °C. The OREOX-treated powder was milled by a vertical attritor at the speed of 150 rpm for 15 minutes. The milled powder was mixed with zinc stearate to be suitable for compacting. Then, $0.05\sim0.2$ wt% of dopant such as TiO₂, Nb₂O₅ are added to each prepared powder.

Green pellets were fabricated by the final compaction process with a pressure of 200 MPa. Zinc stearate was removed during heating of the green pellets for 2 hours at 800 °C in an Ar-4%H₂ atmosphere. The sintering process was performed at 1700 °C for 6 hours in an Ar-4%H₂ atmosphere.

Average particle size, surface area, the apparent density and the tap density of the powders were measured after the OREOX process and the milling process. For the OREOX-treated powder, average particle size was 10.1 μ m. Surface area was 1.88 m²/g. The apparent density was 1.27 g/cm³. And the tap density was 2.45 g/cm³. After milling process, average particle size was 0.67 μ m. The apparent density was 2.02 g/ cm³. And the tap density was 3.48 g/cm³.

Particle size of 1 cycle OREOX treated powder was larger than that of 3 cycles OREOX treated powder. Surface area of 1 cycle OREOX treated powder was less than that of 3 cycles OREOX treated powder. That is, the sinterability of 1 cycle OREOX treated powder was worse than that of 3 cycles OREOX treated powder. A small amount of dopant such as TiO_2 or Nb_2O_5 are added to increase the sinterability of the 1 cycle OREOX treated powder.

3.2 Characteristics of Pellets

Geometric density of the green pellet ranged from 6.28 to 6.30 g/cm³.

The sintered density of the pellets without dopant was 9.86 g/cm³(91.5 % of T.D.), and the average grain size was 2.9 μ m. Both sintered density and grain size did not meet the minimum criteria for CANDU fuel specification.

The sintered densities of the pellets doped with TiO₂ ranged from 10.40 to 10.47 g/cm³, and the average grain size ranged from 12.9 to 15.7 μ m. The densities of the pellets doped with Nb₂O₅ ranged from 10.48 to 10.51 g/cm³, and the grain size ranged from 14.2 to 15.3 μ m. Both sintered density and grain size increased dominantly by doping TiO₂ and Nb₂O₅.

Figure 1. Density of sintered pellets.

3.1 Characteristics of Powder

Figure 2. Grain size of sintered pellets.

(a) Not doped (b) $0.2 \text{ wt\% of } Nb_2O_5$ Figure 3. Microstructure of sintered pellets.

Figure 1, 2, and 3 show the result of experiment. As a result of experiment, a small amount of TiO_2 or Nb_2O_5 is effective to enhance the sinterability of the OREOX treated powder for dry recycling nuclear fuel pellets.

4. Conclusion

The simulated spent PWR fuel pellets were fabricated by using UO₂ powder added by the simulated fission products for the spent PWR fuel with burnup of 35,000 MWd/tU. The simulated dry recycling fuel pellets were fabricated by dry recycling fuel fabrication flow including 1 cycle treated OREOX process. A small amount of TiO₂ or Nb₂O₅ are added to enhance sinterability of the 1 cycle OREOX treated powder. The results are as follows.

- The sinterability of 1 cycle OREOX treated powder was not so good that both sintered density and grain size of the sintered pellets without dopant did not satisfy the criteria of CANDU fuel specification.
- The density as well as the grain size of the sintered pellets increased greatly by doping TiO₂ and Nb₂O₅.
- Consequently, a small amount addition of TiO₂ or Nb₂O₅ is effective to enhance the sinterability of 1 cycle OREOX treated powder for dry recycling nuclear fuel pellets.

ACKNOWLEDGEMENTS

This project has been carried out under the Nuclear R&D Program of Korean Ministry Of Science & Technology.

REFERENCES

[1] W.K.Kim, etc., Experiment on the Improvement of OREOX Process for Fabrication of Dry Recycling Nuclear Fuel Pellets, Korea Atomic Energy Research Institute, KAERI/TR-2674/2004, 2004. 1

[2] M.S.Yang, etc., A Study on the Manufacturing and Processing Technologies of DUPIC Fuel, Korea Atomic Energy Research Institute, KAERI/TR-1336/99, 1999. 6

[3] M.S.Yang, etc., DUPIC Nuclear Fuel Manufacturing and Process Technology Development, Korea Atomic Energy Research Institute, KAERI/RR-2022/99, 2000. 5

[4] W.K.Kim, etc., Fabrication Characteristics of DUPIC Fuel Pellets at DFDF, Korea Atomic Energy Research Institute, KAERI/TR-2005/2002, 2002. 1

[5] K.W.Song, Effect of TiO_2 on sintering behavior of mixed UO_2 and U_3O_8 powder compacts, J. of KNS, Vol. 31, No. 5, pp.455-464, 1999

[6] K.W.Song, Effects of Nb_2O_5 addition on grain growth and densification in UO₂ pellets under reducing and/or oxidizing atmospheres, J. of Nuclear Materials 209, pp.280-285, 1994

[7] K.W.Song, Development of Advanced LWR Fuel : Development of Advanced LWR Fuel Pellet Technology, Korea Atomic Energy Research Institute, KAERI/RR-2023/99, 2000. 3