# Melting temperature measurement of UO<sub>2</sub>-Gd<sub>2</sub>O<sub>3</sub> fuels

Jong Heon Kim, Jae Ho Yang\*, Ki Won Kang, Kun Woo Song, Keon Sik Kim, Young Woo Rhee and

Youn Ho Jung

Advanced LWR Fuel Development, Korea Atomic Energy Research Institute, Deokjin-dong 150, Yuseonggu, Daejeon-si 305-600, Korea, yangjh@kaeri.re.kr\*

## 1. Introduction

 $UO_2$ -Gd<sub>2</sub>O<sub>3</sub> fuel is widely used as a burnable absorber in light water reactors. The melting temperature of oxide fuel is one of the most important properties for estimating the behavior of nuclear fuel during both normal operation and postulated accident conditions.

Sintering a powder mixture of  $UO_2$  and  $Gd_2O_3$ produces the  $UO_2$ - $Gd_2O_3$  fuel pellets. This fuel is a solid solution that Gd ions replace U ions in the lattice. The melting of a solid solution generally occurs in a range of temperature; it begins at the solidus temperature and ends at the liquidus temperature. Beals et al. [1] reported that the solidus temperature of  $UO_2$ - $Gd_2O_3$  was 300-400 lower than the liquidus temperature. However, Wada et al. [2] found out that the solidus temperature was very close to the liquidus temperature although they did not measure the solidus temperature. Thus, there is a big difference between the known solidus temperatures of  $UO_2$ - $Gd_2O_3$ .

In this study, the melting temperature of commercial  $UO_2$ -Gd<sub>2</sub>O<sub>3</sub> fuel pellets imported from the commercial fuel manufacturer were measured by thermal arrest method and compared with the recommended melting point used in fuel design & analysis models.

#### 2. Experiments

Commercial UO<sub>2</sub> fuel pellets containing 4, 6, and 8wt% Gd<sub>2</sub>O<sub>3</sub> were broken into fragments. About 10g of each fuel fragments were loaded in a tungsten capsule, and then the capsule was evacuated down to  $10^{-2}$  Torr and filled with helium.

A special long hole is made in the central position of the capsule. This hole can provide the black body condition for measurement of temperature. The capsule was surrounded by carbon fiber. This arrangement was placed in the center of induction coin in a chamber, which was evacuated below  $10^{-4}$ Torr and then purged by Ar gas. The capsule was heated by an induction generator. The temperature of fuel was continuously measured at the black body hole using a pyrometer mounted on the chamber. The temperature obtained by the pyrometer was calibrated against the known melting points of materials such as Nd<sub>2</sub>O<sub>3</sub> and Gd<sub>2</sub>O<sub>3</sub>.

The power for heating the capsule was steadily increased to certain power using computer program, and thereby the fuel temperature was increased in a simplar way. The temperature where a rising temperature was arrested by the heat of fusion was determined as a melting temperature.

#### 3. Results

Table 1 shows the pellet properties used in melting point measurement experiments.

| Table 1.                                                                                   | Comparison | of the   | pellet p | roperties ai | nd |  |  |
|--------------------------------------------------------------------------------------------|------------|----------|----------|--------------|----|--|--|
| manufacture processes of commercial UO <sub>2</sub> -Gd <sub>2</sub> O <sub>3</sub> fuels. |            |          |          |              |    |  |  |
|                                                                                            | 0          | II I DDI |          |              | ~  |  |  |

| Manufacturer                                 |                                        | KAERI      | В              | С                              |
|----------------------------------------------|----------------------------------------|------------|----------------|--------------------------------|
| Gd <sub>2</sub> O <sub>3</sub> contents(wt%) |                                        | 6wt%       | 4,6,8wt%       | 6wt%                           |
| Process                                      | Powder                                 | milling    | mixing         | 2step<br>milling* <sup>1</sup> |
|                                              | Dopant (ppm)                           | Al (100)   | Х              | Al(100)-<br>Si(40)             |
|                                              | Sintering temperature/<br>time         | 1730°C/4hr | 1740°C/4~6.5hr | 1780°C/6hr                     |
|                                              | Sintering atmosphere $(H_2O/H_2)^{*2}$ | 3%         | 5%             | 3%                             |
| Pellet density (g/cm <sup>3</sup> )          |                                        | 10.33      | 10.22          | 10.25                          |

\*<sup>1</sup> UO<sub>2</sub> mill and then UO<sub>2</sub>-Gd<sub>2</sub>O<sub>3</sub> mixture mill.

 $*^{2} Po_{2}(H_{2}O/H_{2}) \approx Po_{2}(CO_{2}/H_{2})$ 

Fig. 1 shows a typical example of temperature-time profile for  $Gd_2O_3$  melting. The arrest of temperature rise was detected near the known melting temperature  $2420^{\circ}C$  of  $Gd_2O_3$ .

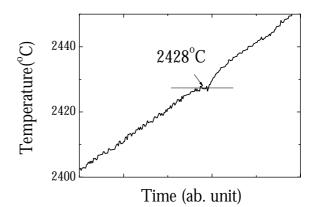
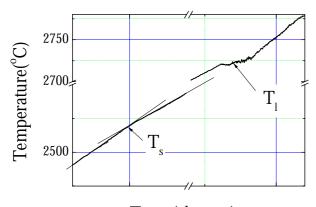




Fig.1. Heating curve for Gd<sub>2</sub>O<sub>3</sub> reference sample

Fig. 2 shows an example of temperature-time profiles for the  $UO_2$ -8wt%Gd<sub>2</sub>O<sub>3</sub> fuel. The temperature profile shows a slow-down in the slope of increasing

temperature in the range between 2500 and 2600 . In addition, the typical thermal arrest is appeared in the vicinity of 2725 . The UO<sub>2</sub>-8wt%Gd<sub>2</sub>O<sub>3</sub> fuel is a solid solution and thus has both solidus and liquidus temperatures. The solidus temperature ( $T_s$ ), start of melting, can be identified by a decrease in the temperature slope, and the liquidus temperature ( $T_L$ ), end of melting, can be identified by an increase in the temperature slope. The arrows in Fig. 2 indicate the determined  $T_s$  and  $T_L$ . The  $T_s$  is difficult to determine since the change in temperature slope is blunt.



Time (ab. unit)

Fig. 2. Heating curve for UO<sub>2</sub>-8wt%Gd<sub>2</sub>O<sub>3</sub>

The determined melting points of commercial UO<sub>2</sub>-Gd<sub>2</sub>O<sub>3</sub> fuels are plotted in Fig. 3 together with recommended melting points used in the fuel design & analysis models for comparison. The determined  $T_s$  and  $T_L$  are almost linearly decreased as the Gd<sub>2</sub>O<sub>3</sub> content increase, and they are slightly higher than the recommended data. But both decreasing rates of  $T_s$  and  $T_L$  according to the Gd<sub>2</sub>O<sub>3</sub> content are in good agreement with those of recommended lines.

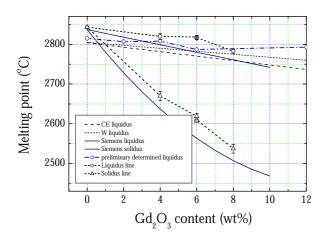



Fig.3. Determined melting temperature of commercial UO<sub>2</sub> -Gd<sub>2</sub>O<sub>3</sub> fuels with content variation

Fig. 4 shows the polished microstructure of  $UO_2$ -6wt%Gd<sub>2</sub>O<sub>3</sub> fuel after the melting experiment. We can find the large columnar grains and cracks, which were

caused by thermal gradient and volume contraction at the freezing stage.



Fig. 4. Microstructure of UO<sub>2</sub>-6wt%Gd<sub>2</sub>O<sub>3</sub> fuel after the melting experiment.

#### 4. Conclusion

The melting temperatures of commercial  $UO_2$ - $Gd_2O_3$ fuels were measured by thermal arrest method using the high frequency induction-heating tool. The solidus temperature ( $T_s$ ) and liquidus temperature ( $T_L$ ) variation according to the  $Gd_2O_3$  content are determined as follows;

$$T_{s}(^{\circ}C) = 2842(11) - 46(6) \times x \ (wt\% \ Gd_{2}O_{3})$$
$$T_{t}(^{\circ}C) = 2847(9) - 6(1) \times x \ (wt\% \ Gd_{2}O_{3})$$

#### Acknowledgements

This study has been carried out under the Nuclear R&D Program by MOST (Ministry of Science and Technology) in Korea

### REFERENCES

- R. J. Beals, J. H. Handwerk and B. J. Wrona, J. Am. Ceramic. Soc. 52 (1969) 578.
- [2] T. Wada, K. Noro, K. Tsukui, "Behavior of UO<sub>2</sub>-Gd<sub>2</sub>O<sub>3</sub> fuel," : in BNES Nuclear Fuel Performance, pp 63.1, (1973)